3,928 research outputs found

    The 2010-12 drought and subsequent extensive flooding: a remarkable hydrological transformation

    Get PDF
    Across most of the UK, the 2010‑12 period was remarkable in climatic terms with exceptional departures from normal rainfall, runoff and aquifer recharge patterns. Generalising broadly, drought conditions developed through 2010, intensified during 2011 and were severe across much of England & Wales by the early spring of 2012. Record late spring and summer rainfall then triggered a hydrological transformation that has no close modern parallel. Seasonally extreme river flows were common through the summer, heralding further extensive flooding during the autumn and, particularly, the early winter when record runoff at the national scale provided a culmination to the wettest nine‑month sequence for England & Wales in an instrumental record beginning in 1766. This report provides comprehensive documentation and hydrometeorological appraisals of a three‑year period which incorporated a number of important regional drought episodes as well as the outstanding runoff and recharge patterns which characterised most of 2012. An examination of the wide range of impacts of the drought and flood episodes is included and the extreme hydrometeorological conditions are examined within an extended historical context. Finally, the recent exceptional conditions are reviewed in the light of observational evidence for trends in temperature, rainfall, river flow and aquifer recharge patterns

    Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion method

    Get PDF
    Periodic composite ultrasonic transducers oer many advantages but the periodic pillar architecture can give rise to unwanted modes of vibration which interfere with the piston like motion of the fundamental thickness mode. In this paper, viscoelastic loss is incorporated into a three dimensional plane wave expansion model (PWE) of these transducers. A comparison with experimental and nite element data is conducted and a design to damp out these lateral modes is investigated. Scaling and regularisation techniques are introduced to the PWE method to reduceill-conditioning in the large matrices which can arise. The identication of the modes of vibration is aided by examining proles of the displacements, electrical potentialand Poynting vector. The dispersive behaviour of a 2-2 composite transducer with high shear attenuation in the passive phase is examined. The model shows thatthe use of a high shear attenuation ller material improves the frequency band gap surrounding the fundamental thickness mode

    The fully connected N-dimensional skeleton: probing the evolution of the cosmic web

    Full text link
    A method to compute the full hierarchy of the critical subsets of a density field is presented. It is based on a watershed technique and uses a probability propagation scheme to improve the quality of the segmentation by circumventing the discreteness of the sampling. It can be applied within spaces of arbitrary dimensions and geometry. This recursive segmentation of space yields, for a dd-dimensional space, a d1d-1 succession of nn-dimensional subspaces that fully characterize the topology of the density field. The final 1D manifold of the hierarchy is the fully connected network of the primary critical lines of the field : the skeleton. It corresponds to the subset of lines linking maxima to saddle points, and provides a definition of the filaments that compose the cosmic web as a precise physical object, which makes it possible to compute any of its properties such as its length, curvature, connectivity etc... When the skeleton extraction is applied to initial conditions of cosmological N-body simulations and their present day non linear counterparts, it is shown that the time evolution of the cosmic web, as traced by the skeleton, is well accounted for by the Zel'dovich approximation. Comparing this skeleton to the initial skeleton undergoing the Zel'dovich mapping shows that two effects are competing during the formation of the cosmic web: a general dilation of the larger filaments that is captured by a simple deformation of the skeleton of the initial conditions on the one hand, and the shrinking, fusion and disappearance of the more numerous smaller filaments on the other hand. Other applications of the N dimensional skeleton and its peak patch hierarchy are discussed.Comment: Accepted for publication in MNRA

    Important extrema of time series

    Full text link
    We describe a technique for fast lossy compression of a time series based on the assignment of importance levels to its minima and maxima

    Fast and robust image feature matching methods for computer vision applications

    Get PDF
    Service robotic systems are designed to solve tasks such as recognizing and manipulating objects, understanding natural scenes, navigating in dynamic and populated environments. It's immediately evident that such tasks cannot be modeled in all necessary details as easy as it is with industrial robot tasks; therefore, service robotic system has to have the ability to sense and interact with the surrounding physical environment through a multitude of sensors and actuators. Environment sensing is one of the core problems that limit the deployment of mobile service robots since existing sensing systems are either too slow or too expensive. Visual sensing is the most promising way to provide a cost effective solution to the mobile robot sensing problem. It's usually achieved using one or several digital cameras placed on the robot or distributed in its environment. Digital cameras are information rich sensors and are relatively inexpensive and can be used to solve a number of key problems for robotics and other autonomous intelligent systems, such as visual servoing, robot navigation, object recognition, pose estimation, and much more. The key challenges to taking advantage of this powerful and inexpensive sensor is to come up with algorithms that can reliably and quickly extract and match the useful visual information necessary to automatically interpret the environment in real-time. Although considerable research has been conducted in recent years on the development of algorithms for computer and robot vision problems, there are still open research challenges in the context of the reliability, accuracy and processing time. Scale Invariant Feature Transform (SIFT) is one of the most widely used methods that has recently attracted much attention in the computer vision community due to the fact that SIFT features are highly distinctive, and invariant to scale, rotation and illumination changes. In addition, SIFT features are relatively easy to extract and to match against a large database of local features. Generally, there are two main drawbacks of SIFT algorithm, the first drawback is that the computational complexity of the algorithm increases rapidly with the number of key-points, especially at the matching step due to the high dimensionality of the SIFT feature descriptor. The other one is that the SIFT features are not robust to large viewpoint changes. These drawbacks limit the reasonable use of SIFT algorithm for robot vision applications since they require often real-time performance and dealing with large viewpoint changes. This dissertation proposes three new approaches to address the constraints faced when using SIFT features for robot vision applications, Speeded up SIFT feature matching, robust SIFT feature matching and the inclusion of the closed loop control structure into object recognition and pose estimation systems. The proposed methods are implemented and tested on the FRIEND II/III service robotic system. The achieved results are valuable to adapt SIFT algorithm to the robot vision applications

    Iconic Indexing for Video Search

    Get PDF
    Submitted for the degree of Doctor of Philosophy, Queen Mary, University of London
    corecore