74 research outputs found

    Optimal Metric Search Is Equivalent to the Minimum Dominating Set Problem

    Full text link
    In metric search, worst-case analysis is of little value, as the search invariably degenerates to a linear scan for ill-behaved data. Consequently, much effort has been expended on more nuanced descriptions of what performance might in fact be attainable, including heuristic baselines like the AESA family, as well as statistical proxies such as intrinsic dimensionality. This paper gets to the heart of the matter with an exact characterization of the best performance actually achievable for any given data set and query. Specifically, linear-time objective-preserving reductions are established in both directions between optimal metric search and the minimum dominating set problem, whose greedy approximation becomes the equivalent of an oracle-based AESA, repeatedly selecting the pivot that eliminates the most of the remaining points. As an illustration, the AESA heuristic is adapted to downplay the role of previously eliminated points, yielding some modest performance improvements over the original, as well as its younger relative iAESA2

    Learning to Prune in Metric and Non-Metric Spaces

    Get PDF
    Abstract Our focus is on approximate nearest neighbor retrieval in metric and non-metric spaces. We employ a VP-tree and explore two simple yet effective learning-toprune approaches: density estimation through sampling and "stretching" of the triangle inequality. Both methods are evaluated using data sets with metric (Euclidean) and non-metric (KL-divergence and Itakura-Saito) distance functions. Conditions on spaces where the VP-tree is applicable are discussed. The VP-tree with a learned pruner is compared against the recently proposed state-of-the-art approaches: the bbtree, the multi-probe locality sensitive hashing (LSH), and permutation methods. Our method was competitive against state-of-the-art methods and, in most cases, was more efficient for the same rank approximation quality

    IDレス生体認証における安全性と利便性の最適化に関する研究

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Fast Data Analytics by Learning

    Full text link
    Today, we collect a large amount of data, and the volume of the data we collect is projected to grow faster than the growth of the computational power. This rapid growth of data inevitably increases query latencies, and horizontal scaling alone is not sufficient for real-time data analytics of big data. Approximate query processing (AQP) speeds up data analytics at the cost of small quality losses in query answers. AQP produces query answers based on synopses of the original data. The sizes of the synopses are smaller than the original data; thus, AQP requires less computational efforts for producing query answers, thus can produce answers more quickly. In AQP, there is a general tradeoff between query latencies and the quality of query answers; obtaining higher-quality answers requires longer query latencies. In this dissertation, we show we can speed up the approximate query processing without reducing the quality of the query answers by optimizing the synopses using two approaches. The two approaches we employ for optimizing the synopses are as follows: 1. Exploiting past computations: We exploit the answers to the past queries. This approach relies on the fact that, if two aggregation involve common or correlated values, the aggregated results must also be correlated. We formally capture this idea using a probabilistic distribution function, which is then used to refine the answers to new queries. 2. Building task-aware synopses: By optimizing synopses for a few common types of data analytics, we can produce higher quality answers (or more quickly for certain target quality) to those data analytics tasks. We use this approach for constructing synopses optimized for searching and visualizations. For exploiting past computations and building task-aware synopses, our work incorporates statistical inference and optimization techniques. The contributions in this dissertation resulted in up to 20x speedups for real-world data analytics workloads.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138598/1/pyongjoo_1.pd

    A tree-structured index algorithm for expressed sequence tags clustering

    Get PDF
    Abstract Expressed sequence tags (ESTs) are complementary deoxyribonucleic acid (cDNA) fragments, which are reverse transcribed from mature ribonucleic acid (mRNA), a direct gene transcript. ESTs are a readily rich information source of complete expressed gene sequences. They reveal the type and number of genes being expressed in an organism. Joining ESTs into complete gene sequences is computationally expensive because they are numerous, erroneous, redundant and mixed up. ESTs that originate from the same gene are grouped together. This enables efficient consensus sequences generation, which reveals underlying gene sequences and their possible alternative splicings. EST clustering enables efficient discovery of expressed genes based on which several fields rely such as: disease diagnostics, drug discovery, genetic engineering, alternative splicing and many others. Most clustering algorithms developed so far are quadratic and their running time is prohibitively high. A tree-structured index algorithm has been developed to efficiently cluster ESTs with respect to running time and quality of generated clusters. The algorithm clusters ESTs in a pseudometric space by recursively partitioning a data set of EST windows into two disjointed sets. Performance of the algorithm was tested with respect to running time and quality of generated clusters. Further experiments were performed to investigate the effectiveness of the triangle inequality, which was implemented to reduce distance computations during clustering. Experimental results show that the algorithm has a running time closer to linear with a 100% specificity, but it fluctuates in sensitivity. Implementation of the triangle inequality did not significantly improve the performance of the algorithm

    Engineering truly automated data integration and translation systems

    Get PDF
    This thesis presents an automated, data-driven integration process for relational databases. Whereas previous integration methods assumed a large amount of user involvement as well as the availability of database meta-data, we make no use of meta-data and little end user input. This is done using a novel join and translation finding algorithm that searches for the proper key / foreign key relationships while inferring the instance transformations from one database to another. Because we rely only on the relations that bind the attributes together, we make no use of the database schema information. A novel searching method allows us to search the database for relevant objects without requiring server side indexes or cooperative databases

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research
    corecore