122 research outputs found

    Child Prime Label Approaches to Evaluate XML Structured Queries

    Get PDF
    The adoption of the eXtensible Markup Language (XML) as the standard format to store and exchange semi-structure data has been gaining momentum. The growing number of XML documents leads to the need for appropriate XML querying algorithms which are able to retrieve XML data efficiently. Due to the importance of twig pattern matching in XML retrieval systems, finding all matching occurrences of a tree pattern query in an XML document is often considered as a specific task for XML databases as well as a core operation in XML query processing. This thesis presents a design and implementation of a new indexing technique, called the Child Prime Label (CPL) which exploits the property of prime numbers to identify Parent-Child (P-C) edges in twig pattern queries (TPQs) during query evaluation. The CPL approach can be incorporated efficiently within the existing labelling schemes. The major contributions of this thesis can be seen as a set of novel twig matching algorithms which apply the CPL approach and focus on reducing the overhead of storing useless elements and performing unnecessary computations during the output enumeration. The research presented here is the first to provide an efficient and general solution for TPQs containing ordering constraints and positional predicates specified by the XML query languages. To evaluate the CPL approaches, the holistic model was implemented as an experimental prototype in which the approaches proposed are compared against state-of-the-art holistic twig algorithms. Extensive performance studies on various real-world and artificial datasets were conducted to demonstrate the significant improvement of the CPL approaches over the previous indexing and querying methods. The experimental results demonstrate the validity and improvements of the new algorithms over other related methods on common various subclasses of TPQs. Moreover, the scalability tests reveal that the new algorithms are more suitable for processing large XML datasets

    An Efficient Dynamic XML Data Broadcasting Method in Mobile Wireless Network Using XPATH Queries

    Get PDF
    Wireless mobile computing has become popular. Users communicate in the wireless mobile environment using their mobi le devices such as smart phones and laptops while they are moving. In previous system can support only static XML rendered from repositories. It is not efficient for dynamic broadcasting of XML data over the stream. Consider energy conservation of mobile clients when disseminating data in the wireless mobile environment, because they use mobile devices with limited battery - power. structure indexing, lineage encoding, selective tuning algorithms can be used to minimize computation costs and filtering time

    Intuitionistic fuzzy XML query matching and rewriting

    Get PDF
    With the emergence of XML as a standard for data representation, particularly on the web, the need for intelligent query languages that can operate on XML documents with structural heterogeneity has recently gained a lot of popularity. Traditional Information Retrieval and Database approaches have limitations when dealing with such scenarios. Therefore, fuzzy (flexible) approaches have become the predominant. In this thesis, we propose a new approach for approximate XML query matching and rewriting which aims at achieving soft matching of XML queries with XML data sources following different schemas. Unlike traditional querying approaches, which require exact matching, the proposed approach makes use of Intuitionistic Fuzzy Trees to achieve approximate (soft) query matching. Through this new approach, not only the exact answer of a query, but also approximate answers are retrieved. Furthermore, partial results can be obtained from multiple data sources and merged together to produce a single answer to a query. The proposed approach introduced a new tree similarity measure that considers the minimum and maximum degrees of similarity/inclusion of trees that are based on arc matching. New techniques for soft node and arc matching were presented for matching queries against data sources with highly varied structures. A prototype was developed to test the proposed ideas and it proved the ability to achieve approximate matching for pattern queries with a number of XML schemas and rewrite the original query so that it obtain results from the underlying data sources. This has been achieved through several novel algorithms which were tested and proved efficiency and low CPU/Memory cost even for big number of data sources

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Approximate Query Answering and Result Refinement on XML Data

    Get PDF
    Today, many economic decisions are based on the fast analysis of XML data. Yet, the time to process analytical XML queries is typically high. Although current XML techniques focus on the optimization of query processing, none of these support early approximate feedback as possible in relational Online Aggregation systems. In this paper, we introduce a system that provides fast estimates to XML aggregation queries. While processing, these estimates and the assigned confidence bounds are constantly improving. In our evaluation, we show that without significantly increasing the overall execution time our system returns accurate guesses of the final answer long before traditional systems are able to produce output
    • …
    corecore