1,036 research outputs found

    Optimized Indexes for Data Structured Retrieval

    Get PDF
    The aim of this work is to show the novel index structure based suffix array and ternary search tree with rank and select succinct data structure. Suffix arrays were originally developed to reduce memory consumption compared to a suffix tree and ternary search tree combine the time efficiency of digital tries with the space efficiency of binary search trees. Rank of a symbol at a given position equals the number of times the symbol appears in the corresponding prefix of the sequence. Select is the inverse, retrieving the positions of the symbol occurrences. These operations are widely used in information retrieval and management, being the base of several data structures and algorithms for text collections, graphs, trees, etc. The resulting structure is faster than hashing for many typical search problems, and supports a broader range of useful problems and operations. There for we implement a path index based on those data structures that shown to be highly efficient when dealing with digital collection consist in structured documents. We describe how the index architecture works and we compare the searching algorithms with others, and finally experiments show the outperforms with earlier approaches

    Dynamic Data Structures for Document Collections and Graphs

    Full text link
    In the dynamic indexing problem, we must maintain a changing collection of text documents so that we can efficiently support insertions, deletions, and pattern matching queries. We are especially interested in developing efficient data structures that store and query the documents in compressed form. All previous compressed solutions to this problem rely on answering rank and select queries on a dynamic sequence of symbols. Because of the lower bound in [Fredman and Saks, 1989], answering rank queries presents a bottleneck in compressed dynamic indexing. In this paper we show how this lower bound can be circumvented using our new framework. We demonstrate that the gap between static and dynamic variants of the indexing problem can be almost closed. Our method is based on a novel framework for adding dynamism to static compressed data structures. Our framework also applies more generally to dynamizing other problems. We show, for example, how our framework can be applied to develop compressed representations of dynamic graphs and binary relations

    From Theory to Practice: Plug and Play with Succinct Data Structures

    Full text link
    Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.Comment: 10 pages, 4 figures, 3 table

    Compressed Text Indexes:From Theory to Practice!

    Full text link
    A compressed full-text self-index represents a text in a compressed form and still answers queries efficiently. This technology represents a breakthrough over the text indexing techniques of the previous decade, whose indexes required several times the size of the text. Although it is relatively new, this technology has matured up to a point where theoretical research is giving way to practical developments. Nonetheless this requires significant programming skills, a deep engineering effort, and a strong algorithmic background to dig into the research results. To date only isolated implementations and focused comparisons of compressed indexes have been reported, and they missed a common API, which prevented their re-use or deployment within other applications. The goal of this paper is to fill this gap. First, we present the existing implementations of compressed indexes from a practitioner's point of view. Second, we introduce the Pizza&Chili site, which offers tuned implementations and a standardized API for the most successful compressed full-text self-indexes, together with effective testbeds and scripts for their automatic validation and test. Third, we show the results of our extensive experiments on these codes with the aim of demonstrating the practical relevance of this novel and exciting technology

    Parsing Large XES Files for Discovering Process Models: A Big Data Problem

    Get PDF
    Process mining is a group of techniques for retrieving de-facto models using system traces. Discovering algorithms can obtain mathematical models exploiting the information contained into list of events of activities. Completeness of the traces is relevant for the accuracy of the final results. Noiseless traces appear as an ideal scenario. The performance of the algorithms is significant reduce if the log files are not processed efficiently. XES is a logical model for process logs stored in data centric xml files. In real processes the sizes of the logs increase exponentially. Parsing XES files is presented as a big data problem in real scenarios with dense traces. Lazy parsers and DOM models are not enough appropriate in scenarios with large volumes of data. We discuss this problematic and how to use indexing techniques for retrieving useful information for process mining. An XES compression schema is also discussed for reducing the index construction time

    Compressed Representations of Permutations, and Applications

    Get PDF
    We explore various techniques to compress a permutation π\pi over n integers, taking advantage of ordered subsequences in π\pi, while supporting its application π\pi(i) and the application of its inverse π−1(i)\pi^{-1}(i) in small time. Our compression schemes yield several interesting byproducts, in many cases matching, improving or extending the best existing results on applications such as the encoding of a permutation in order to support iterated applications πk(i)\pi^k(i) of it, of integer functions, and of inverted lists and suffix arrays
    • …
    corecore