22,622 research outputs found

    Subgraph Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty

    Get PDF
    There is a growing need for methods which can capture uncertainties and answer queries over graph-structured data. Two common types of uncertainty are uncertainty over the attribute values of nodes and uncertainty over the existence of edges. In this paper, we combine those with identity uncertainty. Identity uncertainty represents uncertainty over the mapping from objects mentioned in the data, or references, to the underlying real-world entities. We propose the notion of a probabilistic entity graph (PEG), a probabilistic graph model that defines a distribution over possible graphs at the entity level. The model takes into account node attribute uncertainty, edge existence uncertainty, and identity uncertainty, and thus enables us to systematically reason about all three types of uncertainties in a uniform manner. We introduce a general framework for constructing a PEG given uncertain data at the reference level and develop highly efficient algorithms to answer subgraph pattern matching queries in this setting. Our algorithms are based on two novel ideas: context-aware path indexing and reduction by join-candidates, which drastically reduce the query search space. A comprehensive experimental evaluation shows that our approach outperforms baseline implementations by orders of magnitude

    Graphulo Implementation of Server-Side Sparse Matrix Multiply in the Accumulo Database

    Full text link
    The Apache Accumulo database excels at distributed storage and indexing and is ideally suited for storing graph data. Many big data analytics compute on graph data and persist their results back to the database. These graph calculations are often best performed inside the database server. The GraphBLAS standard provides a compact and efficient basis for a wide range of graph applications through a small number of sparse matrix operations. In this article, we implement GraphBLAS sparse matrix multiplication server-side by leveraging Accumulo's native, high-performance iterators. We compare the mathematics and performance of inner and outer product implementations, and show how an outer product implementation achieves optimal performance near Accumulo's peak write rate. We offer our work as a core component to the Graphulo library that will deliver matrix math primitives for graph analytics within Accumulo.Comment: To be presented at IEEE HPEC 2015: http://www.ieee-hpec.org
    • …
    corecore