23,264 research outputs found

    An information-driven framework for image mining

    Get PDF
    [Abstract]: Image mining systems that can automatically extract semantically meaningful information (knowledge) from image data are increasingly in demand. The fundamental challenge in image mining is to determine how low-level, pixel representation contained in a raw image or image sequence can be processed to identify high-level spatial objects and relationships. To meet this challenge, we propose an efficient information-driven framework for image mining. We distinguish four levels of information: the Pixel Level, the Object Level, the Semantic Concept Level, and the Pattern and Knowledge Level. High-dimensional indexing schemes and retrieval techniques are also included in the framework to support the flow of information among the levels. We believe this framework represents the first step towards capturing the different levels of information present in image data and addressing the issues and challenges of discovering useful patterns/knowledge from each level

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    Packing and Padding: Coupled Multi-index for Accurate Image Retrieval

    Full text link
    In Bag-of-Words (BoW) based image retrieval, the SIFT visual word has a low discriminative power, so false positive matches occur prevalently. Apart from the information loss during quantization, another cause is that the SIFT feature only describes the local gradient distribution. To address this problem, this paper proposes a coupled Multi-Index (c-MI) framework to perform feature fusion at indexing level. Basically, complementary features are coupled into a multi-dimensional inverted index. Each dimension of c-MI corresponds to one kind of feature, and the retrieval process votes for images similar in both SIFT and other feature spaces. Specifically, we exploit the fusion of local color feature into c-MI. While the precision of visual match is greatly enhanced, we adopt Multiple Assignment to improve recall. The joint cooperation of SIFT and color features significantly reduces the impact of false positive matches. Extensive experiments on several benchmark datasets demonstrate that c-MI improves the retrieval accuracy significantly, while consuming only half of the query time compared to the baseline. Importantly, we show that c-MI is well complementary to many prior techniques. Assembling these methods, we have obtained an mAP of 85.8% and N-S score of 3.85 on Holidays and Ukbench datasets, respectively, which compare favorably with the state-of-the-arts.Comment: 8 pages, 7 figures, 6 tables. Accepted to CVPR 201

    Learning a Complete Image Indexing Pipeline

    Full text link
    To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, the former continues to be based on unsupervised clustering in the literature. In this work, we propose a first system that learns both components within a unifying neural framework of structured binary encoding

    Learning a Complete Image Indexing Pipeline

    Full text link
    To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, the former continues to be based on unsupervised clustering in the literature. In this work, we propose a first system that learns both components within a unifying neural framework of structured binary encoding

    Combining textual and visual information processing for interactive video retrieval: SCHEMA's participation in TRECVID 2004

    Get PDF
    In this paper, the two different applications based on the Schema Reference System that were developed by the SCHEMA NoE for participation to the search task of TRECVID 2004 are illustrated. The first application, named ”Schema-Text”, is an interactive retrieval application that employs only textual information while the second one, named ”Schema-XM”, is an extension of the former, employing algorithms and methods for combining textual, visual and higher level information. Two runs for each application were submitted, I A 2 SCHEMA-Text 3, I A 2 SCHEMA-Text 4 for Schema-Text and I A 2 SCHEMA-XM 1, I A 2 SCHEMA-XM 2 for Schema-XM. The comparison of these two applications in terms of retrieval efficiency revealed that the combination of information from different data sources can provide higher efficiency for retrieval systems. Experimental testing additionally revealed that initially performing a text-based query and subsequently proceeding with visual similarity search using one of the returned relevant keyframes as an example image is a good scheme for combining visual and textual information
    • 

    corecore