17,787 research outputs found

    Directed Containers as Categories

    Get PDF
    Directed containers make explicit the additional structure of those containers whose set functor interpretation carries a comonad structure. The data and laws of a directed container resemble those of a monoid, while the data and laws of a directed container morphism those of a monoid morphism in the reverse direction. With some reorganization, a directed container is the same as a small category, but a directed container morphism is opcleavage-like. We draw some conclusions for comonads from this observation, considering in particular basic constructions and concepts like the opposite category and a groupoid.Comment: In Proceedings MSFP 2016, arXiv:1604.0038

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    Better bitmap performance with Roaring bitmaps

    Get PDF
    Bitmap indexes are commonly used in databases and search engines. By exploiting bit-level parallelism, they can significantly accelerate queries. However, they can use much memory, and thus we might prefer compressed bitmap indexes. Following Oracle's lead, bitmaps are often compressed using run-length encoding (RLE). Building on prior work, we introduce the Roaring compressed bitmap format: it uses packed arrays for compression instead of RLE. We compare it to two high-performance RLE-based bitmap encoding techniques: WAH (Word Aligned Hybrid compression scheme) and Concise (Compressed `n' Composable Integer Set). On synthetic and real data, we find that Roaring bitmaps (1) often compress significantly better (e.g., 2 times) and (2) are faster than the compressed alternatives (up to 900 times faster for intersections). Our results challenge the view that RLE-based bitmap compression is best

    Data types with symmetries and polynomial functors over groupoids

    Get PDF
    Polynomial functors are useful in the theory of data types, where they are often called containers. They are also useful in algebra, combinatorics, topology, and higher category theory, and in this broader perspective the polynomial aspect is often prominent and justifies the terminology. For example, Tambara's theorem states that the category of finite polynomial functors is the Lawvere theory for commutative semirings. In this talk I will explain how an upgrade of the theory from sets to groupoids is useful to deal with data types with symmetries, and provides a common generalisation of and a clean unifying framework for quotient containers (cf. Abbott et al.), species and analytic functors (Joyal 1985), as well as the stuff types of Baez-Dolan. The multi-variate setting also includes relations and spans, multispans, and stuff operators. An attractive feature of this theory is that with the correct homotopical approach - homotopy slices, homotopy pullbacks, homotopy colimits, etc. - the groupoid case looks exactly like the set case. After some standard examples, I will illustrate the notion of data-types-with-symmetries with examples from quantum field theory, where the symmetries of complicated tree structures of graphs play a crucial role, and can be handled elegantly using polynomial functors over groupoids. (These examples, although beyond species, are purely combinatorial and can be appreciated without background in quantum field theory.) Locally cartesian closed 2-categories provide semantics for 2-truncated intensional type theory. For a fullfledged type theory, locally cartesian closed \infty-categories seem to be needed. The theory of these is being developed by D.Gepner and the author as a setting for homotopical species, and several of the results exposed in this talk are just truncations of \infty-results obtained in joint work with Gepner. Details will appear elsewhere.Comment: This is the final version of my conference paper presented at the 28th Conference on the Mathematical Foundations of Programming Semantics (Bath, June 2012); to appear in the Electronic Notes in Theoretical Computer Science. 16p

    Dependent Inductive and Coinductive Types are Fibrational Dialgebras

    Get PDF
    In this paper, I establish the categorical structure necessary to interpret dependent inductive and coinductive types. It is well-known that dependent type theories \`a la Martin-L\"of can be interpreted using fibrations. Modern theorem provers, however, are based on more sophisticated type systems that allow the definition of powerful inductive dependent types (known as inductive families) and, somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show how data type definitions correspond to initial and final dialgebras for these functors. This description is also a proposal of how coinductive types should be treated in type theories, as they appear here simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras and coalgebras, and give the correspondence to dependent polynomial functors.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Indexed induction and coinduction, fibrationally.

    Get PDF
    This paper extends the fibrational approach to induction and coinduction pioneered by Hermida and Jacobs, and developed by the current authors, in two key directions. First, we present a sound coinduction rule for any data type arising as the final coalgebra of a functor, thus relaxing Hermida and Jacobs’ restriction to polynomial data types. For this we introduce the notion of a quotient category with equality (QCE), which both abstracts the standard notion of a fibration of relations constructed from a given fibration, and plays a role in the theory of coinduction dual to that of a comprehension category with unit (CCU) in the theory of induction. Second, we show that indexed inductive and coinductive types also admit sound induction and coinduction rules. Indexed data types often arise as initial algebras and final coalgebras of functors on slice categories, so our key technical results give sufficent conditions under which we can construct, from a CCU (QCE) U : E -> B, a fibration with base B/I that models indexing by I and is also a CCU (QCE)
    • 

    corecore