500 research outputs found

    Arithmetic complexity via effective names for random sequences

    Full text link
    We investigate enumerability properties for classes of sets which permit recursive, lexicographically increasing approximations, or left-r.e. sets. In addition to pinpointing the complexity of left-r.e. Martin-L\"{o}f, computably, Schnorr, and Kurtz random sets, weakly 1-generics and their complementary classes, we find that there exist characterizations of the third and fourth levels of the arithmetic hierarchy purely in terms of these notions. More generally, there exists an equivalence between arithmetic complexity and existence of numberings for classes of left-r.e. sets with shift-persistent elements. While some classes (such as Martin-L\"{o}f randoms and Kurtz non-randoms) have left-r.e. numberings, there is no canonical, or acceptable, left-r.e. numbering for any class of left-r.e. randoms. Finally, we note some fundamental differences between left-r.e. numberings for sets and reals

    On approximate decidability of minimal programs

    Full text link
    An index ee in a numbering of partial-recursive functions is called minimal if every lesser index computes a different function from ee. Since the 1960's it has been known that, in any reasonable programming language, no effective procedure determines whether or not a given index is minimal. We investigate whether the task of determining minimal indices can be solved in an approximate sense. Our first question, regarding the set of minimal indices, is whether there exists an algorithm which can correctly label 1 out of kk indices as either minimal or non-minimal. Our second question, regarding the function which computes minimal indices, is whether one can compute a short list of candidate indices which includes a minimal index for a given program. We give some negative results and leave the possibility of positive results as open questions

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page

    On the groupoid of transformations of rigid structures on surfaces

    Full text link
    We prove that the groupoid of transformations of rigid structures on surfaces has a finite presentation as a 2-groupoid establishing a result first conjectured by G.Moore and N.Seiberg. An alternative proof was given by B.Bakalov and A.Kirillov Jr. We present some applications to TQFTs. This is also related to recent work on the Grothendieck-Teichmuller groupoid by P.Lochak, A.Hatcher and L.Schneps.Comment: 38 pages, 35 eps figure

    Things that can be made into themselves

    Full text link
    One says that a property PP of sets of natural numbers can be made into itself iff there is a numbering α0,α1,\alpha_0,\alpha_1,\ldots of all left-r.e. sets such that the index set {e:αe\{e: \alpha_e satisfies P}P\} has the property PP as well. For example, the property of being Martin-L\"of random can be made into itself. Herein we characterize those singleton properties which can be made into themselves. A second direction of the present work is the investigation of the structure of left-r.e. sets under inclusion modulo a finite set. In contrast to the corresponding structure for r.e. sets, which has only maximal but no minimal members, both minimal and maximal left-r.e. sets exist. Moreover, our construction of minimal and maximal left-r.e. sets greatly differs from Friedberg's classical construction of maximal r.e. sets. Finally, we investigate whether the properties of minimal and maximal left-r.e. sets can be made into themselves

    A generalized characterization of algorithmic probability

    Get PDF
    An a priori semimeasure (also known as "algorithmic probability" or "the Solomonoff prior" in the context of inductive inference) is defined as the transformation, by a given universal monotone Turing machine, of the uniform measure on the infinite strings. It is shown in this paper that the class of a priori semimeasures can equivalently be defined as the class of transformations, by all compatible universal monotone Turing machines, of any continuous computable measure in place of the uniform measure. Some consideration is given to possible implications for the prevalent association of algorithmic probability with certain foundational statistical principles
    corecore