10,295 research outputs found

    Conformal Mapping on Rough Boundaries II: Applications to bi-harmonic problems

    Full text link
    We use a conformal mapping method introduced in a companion paper to study the properties of bi-harmonic fields in the vicinity of rough boundaries. We focus our analysis on two different situations where such bi-harmonic problems are encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in uni-axial tension. We perform a complete numerical solution of these two-dimensional problems for any univalued rough surfaces. We present results for sinusoidal and self-affine surface whose slope can locally reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in particular that at first order in roughness amplitude, the surface stress of a material in uni-axial tension can be directly obtained from the Hilbert transform of the local slope. In case of self-affine surfaces, we show that the stress distribution presents, for large stresses, a power law tail whose exponent continuously depends on the roughness amplitude

    Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform

    Get PDF
    For every fixed constant α>0\alpha > 0, we design an algorithm for computing the kk-sparse Walsh-Hadamard transform of an NN-dimensional vector xRNx \in \mathbb{R}^N in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)}. Specifically, the algorithm is given query access to xx and computes a kk-sparse x~RN\tilde{x} \in \mathbb{R}^N satisfying x~x^1cx^Hk(x^)1\|\tilde{x} - \hat{x}\|_1 \leq c \|\hat{x} - H_k(\hat{x})\|_1, for an absolute constant c>0c > 0, where x^\hat{x} is the transform of xx and Hk(x^)H_k(\hat{x}) is its best kk-sparse approximation. Our algorithm is fully deterministic and only uses non-adaptive queries to xx (i.e., all queries are determined and performed in parallel when the algorithm starts). An important technical tool that we use is a construction of nearly optimal and linear lossless condensers which is a careful instantiation of the GUV condenser (Guruswami, Umans, Vadhan, JACM 2009). Moreover, we design a deterministic and non-adaptive 1/1\ell_1/\ell_1 compressed sensing scheme based on general lossless condensers that is equipped with a fast reconstruction algorithm running in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)} (for the GUV-based condenser) and is of independent interest. Our scheme significantly simplifies and improves an earlier expander-based construction due to Berinde, Gilbert, Indyk, Karloff, Strauss (Allerton 2008). Our methods use linear lossless condensers in a black box fashion; therefore, any future improvement on explicit constructions of such condensers would immediately translate to improved parameters in our framework (potentially leading to k(logN)O(1)k (\log N)^{O(1)} reconstruction time with a reduced exponent in the poly-logarithmic factor, and eliminating the extra parameter α\alpha). Finally, by allowing the algorithm to use randomness, while still using non-adaptive queries, the running time of the algorithm can be improved to O~(klog3N)\tilde{O}(k \log^3 N)

    HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting

    Get PDF
    Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-nary matching to map the temporal MRF signals to quantitative tissue parameters. Such approaches suffer from inherent discretization errors, as well as high computational complexity as the dictionary size grows. To alleviate these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA. Methods: HYDRA involves two stages: a model-based signature restoration phase and a learning-based parameter restoration phase. Signal restoration is implemented using low-rank based de-aliasing techniques while parameter restoration is performed using a deep nonlocal residual convolutional neural network. The designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF signal as input and produces the corresponding tissue parameters. Results: We validated our approach on both synthetic data and anatomical data generated from a healthy subject. The results demonstrate that, in contrast to conventional dictionary-matching based MRF techniques, our approach significantly improves inference speed by eliminating the time-consuming dictionary matching operation, and alleviates discretization errors by outputting continuous-valued parameters. We further avoid the need to store a large dictionary, thus reducing memory requirements. Conclusions: Our approach demonstrates advantages in terms of inference speed, accuracy and storage requirements over competing MRF method

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary
    corecore