44,720 research outputs found

    A class of index coding problems with rate 1/3

    Full text link
    An index coding problem with nn messages has symmetric rate RR if all nn messages can be conveyed at rate RR. In a recent work, a class of index coding problems for which symmetric rate 13\frac{1}{3} is achievable was characterised using special properties of the side-information available at the receivers. In this paper, we show a larger class of index coding problems (which includes the previous class of problems) for which symmetric rate 13\frac{1}{3} is achievable. In the process, we also obtain a stricter necessary condition for rate 13\frac{1}{3} feasibility than what is known in literature.Comment: Shorter version submitted to ISIT 201

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Coding Strategies for Noise-Free Relay Cascades with Half-Duplex Constraint

    Full text link
    Two types of noise-free relay cascades are investigated. Networks where a source communicates with a distant receiver via a cascade of half-duplex constrained relays, and networks where not only the source but also a single relay node intends to transmit information to the same destination. We introduce two relay channel models, capturing the half-duplex constraint, and within the framework of these models capacity is determined for the first network type. It turns out that capacity is significantly higher than the rates which are achievable with a straightforward time-sharing approach. A capacity achieving coding strategy is presented based on allocating the transmit and receive time slots of a node in dependence of the node's previously received data. For the networks of the second type, an upper bound to the rate region is derived from the cut-set bound. Further, achievability of the cut-set bound in the single relay case is shown given that the source rate exceeds a certain minimum value.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 200

    Filter and nested-lattice code design for fading MIMO channels with side-information

    Full text link
    Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference known only at the transmitter, where the known interference is treated as side-information (SI). As a special case of LA-GPC, dirty paper coding has been shown to be able to achieve the optimal interference-free rate for interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal) performance in a variety of fast and slow fading SI channels. In this paper, we design the filters in nested-lattice based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO) channels. Compared with the random Gaussian codebooks used in previous works, our resultant coding schemes have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200
    • …
    corecore