11,948 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    PFTijah: text search in an XML database system

    Get PDF
    This paper introduces the PFTijah system, a text search system that is integrated with an XML/XQuery database management system. We present examples of its use, we explain some of the system internals, and discuss plans for future work. PFTijah is part of the open source release of MonetDB/XQuery

    Querying XML data streams from wireless sensor networks: an evaluation of query engines

    Get PDF
    As the deployment of wireless sensor networks increase and their application domain widens, the opportunity for effective use of XML filtering and streaming query engines is ever more present. XML filtering engines aim to provide efficient real-time querying of streaming XML encoded data. This paper provides a detailed analysis of several such engines, focusing on the technology involved, their capabilities, their support for XPath and their performance. Our experimental evaluation identifies which filtering engine is best suited to process a given query based on its properties. Such metrics are important in establishing the best approach to filtering XML streams on-the-fly

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Path Queries on Compressed XML

    Get PDF
    Central to any XML query language is a path language such as XPath which operates on the tree structure of the XML document. We demonstrate in this paper that the tree structure can be e#ectively compressed and manipulated using techniques derived from symbolic model checking . Specifically, we show first that succinct representations of document tree structures based on sharing subtrees are highly e#ective. Second, we show that compressed structures can be queried directly and e#ciently through a process of manipulating selections of nodes and partial decompression

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps

    Get PDF
    Relational query processors derive much of their effectiveness from the awareness of specific table properties like sort order, size, or absence of duplicate tuples. This text applies (and adapts) this successful principle to database-supported XML and XPath processing: the relational system is made tree aware, i.e., tree properties like subtree size, intersection of paths, inclusion or disjointness of subtrees are made explicit. We propose a local change to the database kernel, the staircase join, which encapsulates the necessary tree knowledge needed to improve XPath performance. Staircase join operates on an XML encoding which makes this knowledge available at the cost of simple integer operations (e.g., +, <=). We finally report on quite promising experiments with a staircase join enhanced main-memory database kernel
    corecore