36 research outputs found

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    Superstrong and other large cardinals are never Laver indestructible

    Full text link
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, \Sigma_n-reflecting cardinals, \Sigma_n-correct cardinals and \Sigma_n-extendible cardinals (all for n>2) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if \kappa\ exhibits any of them, with corresponding target \theta, then in any forcing extension arising from nontrivial strategically <\kappa-closed forcing Q in V_\theta, the cardinal \kappa\ will exhibit none of the large cardinal properties with target \theta\ or larger.Comment: 19 pages. Commentary concerning this article can be made at http://jdh.hamkins.org/superstrong-never-indestructible. Minor changes in v

    Some Intuition behind Large Cardinal Axioms, Their Characterization, and Related Results

    Get PDF
    We aim to explain the intuition behind several large cardinal axioms, give characterization theorems for these axioms, and then discuss a few of their properties. As a capstone, we hope to introduce a new large cardinal notion and give a similar characterization theorem of this new notion. Our new notion of near strong compactness was inspired by the similar notion of near supercompactness, due to Jason Schanker

    Weak Indestructibility and Reflection

    Full text link
    This work is a part of my upcoming thesis [7]. We establish an equiconsistency between (1) weak indestructibility for all κ+2\kappa +2-degrees of strength for cardinals κ\kappa in the presence of a proper class of strong cardinals, and (2) a proper class of cardinals that are strong reflecting strongs. We in fact get weak indestructibility for degrees of strength far beyond κ+2\kappa +2, well beyond the next inaccessible limit of measurables (of the ground model). One direction is proven using forcing and the other using core model techniques from inner model theory. Additionally, connections between weak indestructibility and the reflection properties associated with Woodin cardinals are discussed.Comment: 28 page
    corecore