38 research outputs found

    Short-range longitudinal and transverse wakefield effects in FERMI@Elettra FEL project

    Get PDF
    The FERMI@Elettra Free Electron Laser (FEL) project is a soft X-ray fourth generation light source under development at the ELETTRA Laboratory of Sincrotrone Trieste. It is one of the FEL based European projects, designed to become the international user facility in Italy for scientific investigations, with ultra high brilliance X-ray pulses, of ultra-fast and ultra-high resolution processes in material science and physical biosciences. When ultra-relativistic charged particles pass through cross section variations of the vacuum chamber wall or experience the finite conductivity of the wall, they generate electromagnetic fields, which are named wakefields since they remain behind the exciting particles. These electromagnetic fields usually influence the energy and the transverse motion of trailing particles leading to beam instabilities, such as single bunch energy spread variations and emittance growth. Since FEL operation requires a beam with a short bunch and high quality in terms of bunch energy spread and emittance, a good knowledge of these wakefields is needed to predict the beam quality. This thesis deals with analytical and numerical studies of the short-range longitudinal and transverse wake¿elds and their effects along the linac and undulator chain. In Ch. 2 we have estimated the short-range wake¿elds in the backward traveling wave (BTW) accelerating structure. Each section is a backward traveling (BTW) structure composed of 162 nose cone cavities coupled magnetically. To calculate the effect of the longitudinal and transverse wake¿elds we have used the time domain numerical approach with a new implicit scheme for calculation of wake potential of short bunches in long structures. The wake potentials of the BTW structure are calculated numerically for very short bunches and analytical approximations for wake functions in short and long ranges are obtained by fitting procedures based on analytical estimations. Finally the single bunch energy spread induced by short-range longitudinal wake¿elds is analyzed. In Ch. 3 we have studied these electron beam dynamics in the presence of the linac transverse wake¿eld. Trajectory manipulation is used to gain control of the transverse wake¿eld induced instability and this technique is also validated in the presence of shot-to-shot trajectory jitter. A specific script working with Courant-Snyder variables has been written to evaluate the residual banana shape after instability suppression in the presence of shot-to-shot trajectory jitter. In Ch. 4 we have analytically derived expressions for the high-frequency longitudinal and transverse resistive-wall coupling impedance of an elliptical cross-section vacuum chamber. Then, the corresponding longitudinal and transverse wake functions have been obtained by calculating numerically the inverse Fourier transforms of the impedances. In Ch. 5 we report a novel concept to passively linearize the bunch compression process in electron linacs for the next generation X-ray free electron lasers. This can be done by using the monopole wake¿elds in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order RF time-curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function

    이동통신 기기에 적합한 재구성이 가능한 다중대역 선형 CMOS 전력증폭기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 권영우.In this Dissertation, a study on multiband reconfigurable linear CMOS power amplifier (PA) is performed. Since a larger number of frequency bands is allocated for 3G/4G mobile communication standards nowadays, handset PAs are required to support the ever-increasing number of frequency bands. With the advent of high-speed wireless data transmission, handset PAs are also demanded to perform linear power amplification under the wide-band signal condition. Even though the CMOS technology has cost and size benefits, however, designing a watt-level linear CMOS PA is a challenging issue due to low breakdown voltage and nonlinear nature of the CMOS device. To resolve the issues above, this study presents two methods suitable for multiband (MB) linear CMOS PA: a reconfigurable MB matching structure and a linearization technique. The proposed MB structure shares a PA core to reduce the cost and size, and contains the power- and frequency-reconfigurable matching networks as well as the output path-selection function. Thus, it can perform the MB operation requiring multiple frequency bands and target output powers. The reconfiguration mechanism is quantitatively analyzed and experimentally demonstrated. The fabricated tri-band reconfigurable 3G UMTS PA using an InGaP/GaAs heterojunction bipolar transistor (HBT) process for practical handset application showed minimal efficiency degradation of less than 2% by multi-banding, compared with a single-band reference PA. For linearization of a CMOS PA, a phase-based linearization technique is presented. Since the PA nonlinearity is determined by the dynamic AM-AM and AM-PM, the two distortions should simultaneously be considered in linearization. Contrary to the previous works which have focused on the correction of AM-AM distortion by providing an envelope-dependent gate-bias, this work proposes an AM-PM linearizer using a varactor and an envelope-reshaping circuit. This linearizer helps the PA recover AM-AM distortion as well. To validate the usefulness of the proposed linearizer, 1.88 GHz and 0.9 GHz stacked-FET PAs using a 0.32-μm silicon-on-insulator (SOI) CMOS process were designed and fabricated. Measurement results showed that the fabricated 1.88 / 0.9 GHz linear CMOS PAs achieved linear efficiencies (meeting –39 dBc W-CDMA ACLR) of higher than 44 / 49%. Furthermore, a single-chain MB linear CMOS PA was implemented based on the proposed MB reconfiguration and linearization techniques. The fabricated MB PA, which has two outputs and covers five popular uplink UMTS/LTE bands (Band 1/2/4/5/8: 824 ~ 1980 MHz), showed minimal efficiency degradation (< 3.3%) compared to the single-band dedicated CMOS PA with W-CDMA efficiencies in excess of 40.7%. Finally, the signal-bandwidth limiting effect of the envelope-based linear CMOS PA is discussed and a solution is proposed. Due to the time delay during envelope-detection and shaping, a timing mismatch between the incoming RF signal and envelope-reshaped signal occurs, thus resulting in no linearization effect under wide-band signal (LTE 20 MHz or more) conditions. To resolve the problem, a group delay circuit with a compact size is employed and thus the linearization effect of the proposed phase-based linearizer is maintained up to 40 MHz LTE bandwidth.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1 Motivation 1 1.2 Multiband PA Structure 4 1.3 Linearization of CMOS PA 6 1.4 Dissertation Organization 7 1.5 References 9 2. A Multiband Reconfigurable Power Amplifier for 3G UMTS Handset Applications 10 2.1 Introduction 10 2.2 Operation Principle of the Reconfigurable Output Matching Network 12 2.2.1 Power Reconfigurable Network (PRN) 14 2.2.2 Frequency Reconfigurable Network (FRN) 17 2.2.3 Path Selection Network (PSN) 20 2.2.4 Experimental Validation of the PRN and FRN 24 2.3 Fabrication and Measurement of a MB UMTS Reconfigurable PA 26 2.3.1 Design 26 2.3.2 Measurement 31 2.4 Summary 37 2.5 References 38 3. Linearization of CMOS Power Amplifier and Its Multiband Application 41 3.1 Introduction 41 3.2 Linearization of CMOS PAs: Prior Arts 43 3.3 Harmonic Termination 46 3.3.1 Operation Analysis 47 3.3.2 Experimental Validation 52 3.4 Control of Gate Bias Modulation Effect 54 3.4.1 Analysis 54 3.4.2 Experimental Validation 60 3.5 Proposed Linearization #1: Hybrid Bias 67 3.6 Proposed Linearization #2: Phase Injection 71 3.6.1 Motivation 71 3.6.2 Phase (Capacitance) Injection 72 3.7 Linear CMOS PA Design 75 3.7.1 Baseline PA Design 76 3.7.2 Linearizer Design 78 3.7.3 Fabrication 82 3.8 Measurement Results 83 3.8.1 CW Measurement 83 3.8.2 W-CDMA Measurement 84 3.8.3 LTE Measurement 87 3.9 A Single-Chain MB Reconfigurable Linear PA in SOI CMOS 90 3.9.1 MB Linear CMOS PA: Design 90 3.9.2 MB Linear CMOS PA: Measurement 94 3.10 Summary 99 3.11 References 100 4. Linearization of CMOS Power Amplifier Convering Wideband Signal 105 4.1 Introduction 105 4.2 Bandwidth Limitation of Envelope-Based Linearizers 106 4.2.1 Analysis 106 4.2.2 Delay Correction 110 4.2.3 Feedforward Envelope-Detection Structure with a Delay T/L 114 4.3 Group Delay Circuit 117 4.3.1 Positive GDC versus Negative GDC 117 4.3.2 Left-Handed T/L-Based GDC 119 4.4 Fabrication and Measurement 122 4.4.1 GDC Measurement 123 4.4.2 LTE Measurement 124 4.5 Summary 127 4.6 References 128 5. Conclusions 130 5.1 Research Summary 130 5.2 Future Works 132 Abstract in Korean 133 Publications 135Docto

    High efficiency power amplifiers for modern mobile communications: The load-modulation approach

    Get PDF
    Modern mobile communication signals require power amplifiers able to maintain very high efficiency in a wide range of output power levels, which is a major issue for classical power amplifier architectures. Following the load-modulation approach, efficiency enhancement is achieved by dynamically changing the amplifier load impedance as a function of the input power. In this paper, a review of the widely-adopted Doherty power amplifier and of the other load-modulation efficiency enhancement techniques is presented. The main theoretical aspects behind each method are introduced, and the most relevant practical implementations available in recent literature are reported and discussed

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    Digital Predistortion of Wideband Satellite Communication Signals with Reduced Observational Bandwidth and Reduced Model Order Complexity

    Get PDF
    The increase in the demand for wireless communications from the user-end point of view calls for an infrastructure that is constantly more capable, reliable and efficient. One of the critical nodes in the telecommunications process, from the hardware perspective, is the power amplifier (PA): it is not only the more powerconsuming device in the transmission chain but it also has a highly nonlinear behaviour which can compromise the well-functioning of the communications infrastructure. This thesis addresses the digital predistortion (DPD) technique, whose goal is to reduce the nonlinear influence of the PA in the transmitted signal, and enhances it with two contributions which can allow for a bigger computational and economic efficiency without compromising the effectiveness of DPD. These contributions are the Reduced Observational Bandwidth and the Reduced Model Order. In the former, the observational path required for the implementation of the DPD is redesigned to permit the capture of wideband signals using multiple reduced bandwidth observations. The latter, on the other hand, aims at reducing the number of coefficients needed for DPD by discarding the less contributive modes of the PA behavioural model. Additionally, the technique of reducing the signal PAPR is applied in order to seek a more effective predistortion. The experimental campaign in a real DUT proved that the reduction of the observational bandwidth was feasible and produced similar results when compared to a full spectrum observation

    Conceptual Design Report of the CompactLight X-ray FEL

    Get PDF
    The report presents, as the main result of the CompactLight project, the conceptual design of the CompactLight hard X-ray FEL. It is devided in the following chapters: 1. Executive Summary 2. Introduction 3. Science Goals and Photon Output Requirements 4. Systems Design and Performance 5. Accelerator 6. Light Production 7. Civil Engineering 8. Strategy and Implementation 9. Examples of CompactLight Facilities 10. Alternative Technology Solutions A. Appendice

    KEY FRONT-END CIRCUITS IN MILLIMETER-WAVE SILICON-BASED WIRELESS TRANSMITTERS FOR PHASED-ARRAY APPLICATIONS

    Get PDF
    Millimeter-wave (mm-Wave) phased arrays have been widely used in numerous wireless systems to perform beam forming and spatial filtering that can enhance the equivalent isotropically radiated power (EIRP) for the transmitter (TX). Regarding the existing phased-array architectures, an mm-Wave transmitter includes several building blocks to perform the desired delivered power and phases for wireless communication. Power amplifier (PA) is the most important building block. It needs to offer several advantages, e.g., high efficiency, broadband operation and high linearity. With the recent escalation of interest in 5G wireless communication technologies, mm-Wave transceivers at the 5G frequency bands (e.g., 28 GHz, 37 GHz, 39 GHz, and 60 GHz) have become an important topic in both academia and industry. Thus, PA design is a critical obstacle due to the challenges associated with implementing wideband, highly efficient and highly linear PAs at mm-Wave frequencies. In this dissertation, we present several PA design innovations to address the aforementioned challenges. Additionally, phase shifter (PS) also plays a key role in a phased-array system, since it governs the beam forming quality and steering capabilities. A high-performance phase shifter should achieve a low insertion loss, a wide phase shifting range, dense phase shift angles, and good input/output matching.Ph.D
    corecore