132 research outputs found

    Dense packing on uniform lattices

    Full text link
    We study the Hard Core Model on the graphs G{\rm {\bf \scriptstyle G}} obtained from Archimedean tilings i.e. configurations in {0,1}G\scriptstyle \{0,1\}^{{\rm {\bf G}}} with the nearest neighbor 1's forbidden. Our particular aim in choosing these graphs is to obtain insight to the geometry of the densest packings in a uniform discrete set-up. We establish density bounds, optimal configurations reaching them in all cases, and introduce a probabilistic cellular automaton that generates the legal configurations. Its rule involves a parameter which can be naturally characterized as packing pressure. It can have a critical value but from packing point of view just as interesting are the noncritical cases. These phenomena are related to the exponential size of the set of densest packings and more specifically whether these packings are maximally symmetric, simple laminated or essentially random packings.Comment: 18 page

    Color-blind index in graphs of very low degree

    Get PDF
    Let c:E(G)[k]c:E(G)\to [k] be an edge-coloring of a graph GG, not necessarily proper. For each vertex vv, let cˉ(v)=(a1,,ak)\bar{c}(v)=(a_1,\ldots,a_k), where aia_i is the number of edges incident to vv with color ii. Reorder cˉ(v)\bar{c}(v) for every vv in GG in nonincreasing order to obtain c(v)c^*(v), the color-blind partition of vv. When cc^* induces a proper vertex coloring, that is, c(u)c(v)c^*(u)\neq c^*(v) for every edge uvuv in GG, we say that cc is color-blind distinguishing. The minimum kk for which there exists a color-blind distinguishing edge coloring c:E(G)[k]c:E(G)\to [k] is the color-blind index of GG, denoted dal(G)\operatorname{dal}(G). We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if dal(G)2\operatorname{dal}(G) \leq 2 is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when dal(G)\operatorname{dal}(G) is finite for a class of 3-regular graphs.Comment: 10 pages, 3 figures, and a 4 page appendi
    corecore