3,226 research outputs found

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Integer linear programming vs. graph-based methods in code generation

    Get PDF
    A common characterictic of many applications is that they are aimed at the high-volume consumer market, which is extremely cost-sensitive. However many of them impose stringent performance demands on the underlying system. Therefore the code generation must take into account the restrictions and features given by the target architecture while satisfying these performance demands. High-level language compilers often are unable to generate code meeting these requirements. One reason is the phase coupling problem between instruction scheduling and register allocation. Many compilers perform these tasks separately with each phase ignorant of the require- ments of the other. Commonly, each task is accomplished by using heuristic methods. As the goals of the two phases often conflict, whichever phase is performed first imposes constraints on the other, sometimes producing inefficient code. Integer linear programming (ILP) provides an integrated approach to the combined instruction scheduling and register allocation problem. This way, optimal solutions can be found - albeit at the cost of high compilation times. In our experiments, we considered as target processor the 32-bit DSP ADSP-2106x. We have examined two different ILP formulations and compared them with conventional approaches including list scheduling and the critical path method. Moreover, we have investigated approximations based on the ILP formulations; this way, compilation time can be reduced considerably while still producing near-optimal results. From the results of our implementation, we have concluded that integrating ILP formulations in conventional global algorithms is a promising method for generating high-quality code

    SOLUTIONS FOR OPTIMIZING THE DATA PARALLEL PREFIX SUM ALGORITHM USING THE COMPUTE UNIFIED DEVICE ARCHITECTURE

    Get PDF
    In this paper, we analyze solutions for optimizing the data parallel prefix sum function using the Compute Unified Device Architecture (CUDA) that provides a viable solution for accelerating a broad class of applications. The parallel prefix sum function is an essential building block for many data mining algorithms, and therefore its optimization facilitates the whole data mining process. Finally, we benchmark and evaluate the performance of the optimized parallel prefix sum building block in CUDA.CUDA, threads, GPGPU, parallel prefix sum, parallel processing, task synchronization, warp

    On Longest Repeat Queries Using GPU

    Full text link
    Repeat finding in strings has important applications in subfields such as computational biology. The challenge of finding the longest repeats covering particular string positions was recently proposed and solved by \.{I}leri et al., using a total of the optimal O(n)O(n) time and space, where nn is the string size. However, their solution can only find the \emph{leftmost} longest repeat for each of the nn string position. It is also not known how to parallelize their solution. In this paper, we propose a new solution for longest repeat finding, which although is theoretically suboptimal in time but is conceptually simpler and works faster and uses less memory space in practice than the optimal solution. Further, our solution can find \emph{all} longest repeats of every string position, while still maintaining a faster processing speed and less memory space usage. Moreover, our solution is \emph{parallelizable} in the shared memory architecture (SMA), enabling it to take advantage of the modern multi-processor computing platforms such as the general-purpose graphics processing units (GPU). We have implemented both the sequential and parallel versions of our solution. Experiments with both biological and non-biological data show that our sequential and parallel solutions are faster than the optimal solution by a factor of 2--3.5 and 6--14, respectively, and use less memory space.Comment: 14 page
    corecore