259 research outputs found

    The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

    Get PDF
    The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry was held on 1–15 July 2021. The scope of this online conference was to gather experts that are well-known worldwide who are currently working in chemical sensor technologies and to provide an online forum for the presention and discussion of new results. Throughout this event, topics of interest included, but were not limited to, the following: electrochemical devices and sensors; optical chemical sensors; mass-sensitive sensors; materials for chemical sensing; nano- and micro-technologies for sensing; chemical assays and validation; chemical sensor applications; analytical methods; gas sensors and apparatuses; electronic noses; electronic tongues; microfluidic devices; lab-on-a-chip; single-molecule sensing; nanosensors; and medico-diagnostic testing

    Surface Plasmon Resonance for Biosensing

    Get PDF
    The rise of photonics technologies has driven an extremely fast evolution in biosensing applications. Such rapid progress has created a gap of understanding and insight capability in the general public about advanced sensing systems that have been made progressively available by these new technologies. Thus, there is currently a clear need for moving the meaning of some keywords, such as plasmonic, into the daily vocabulary of a general audience with a reasonable degree of education. The selection of the scientific works reported in this book is carefully balanced between reviews and research papers and has the purpose of presenting a set of applications and case studies sufficiently broad enough to enlighten the reader attention toward the great potential of plasmonic biosensing and the great impact that can be expected in the near future for supporting disease screening and stratification

    NASA Tech Briefs, June 1996

    Get PDF
    Topics: New Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences;Books and Reports

    Research and Technology, 1995

    Get PDF
    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed

    Research and technology, 1992

    Get PDF
    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1992

    Marshall Space Flight Center Faculty Fellowship Program

    Get PDF
    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Signal Enhancement Strategies in Classical Electrochemiluminescence Techniques for Modern Biosensing

    Get PDF
    With the ascent of IT, and since Ashton has invented the term Internet of Things (IoT) in 1999, this future idea of connected machines that can do tasks and perform decision-control cycles without human input has become more and more attractive and is today an established future scenario. Obviously, in an IoT, “sensors for everything” are one crucial corner stone of its existence and Analytical chemistry can and must deliver them. While many challenges towards a functioning IoT remain, we are on the verge of its beginning. This can be also seen with “Analytics 4.0” in research and on the market, tending to more IT-connected, portable, easier-controllable and integrated solutions. The entrance of mobility in the health sector or Point-of-Care (POC) diagnostics trends are alike influencing biosensing. Whether in mobile solutions or lab- and clinical environments, versatile, powerful and easy-to-adapt detection strategies like Electrochemiluminescence (ECL) are an attractive option. The ECL molecules [Ru(bpy)3]2+ and luminol represent the most prominent and most abundantly investigated luminophores for ECL since Bard’s accomplishment to make ECL a well-known technique. Because both are also two of the most efficient ECL emitters that can be well-handled in bioanalysis, and are available on the market, they are still today frequently used in research and also commercial applications. To cope with current benchmarks of sensitive detection, however a combination with a certain signal enhancement strategy is recommended. Several different routes can here be employed and one option is dendrimers. PAMAM dendrimers can function as ECL coreactant in [Ru(bpy)3]2+-ECL via their amino groups and at the same time expose primary amino groups as possible bioconjugation elements. Exploring this multi-functionality of the dendrimers was investigated here. This was done on a model system employing PAMAM dendrimers with [Ru(bpy)3]2+-ECL together with biotin/streptavidin as biorecognition element and analyte, respectively. The dendrimer’s bi-functionality was successfully proven and a joint-role of a biorecognition element and a possible reporter function suggests an optimum application in homogeneous assays. A different toolset for ECL signal enhancement is offered by liposomes. Numerous signaling molecules can be encapsulated inside the inner cavity of these synthetic vesicles, while they provide protection from the environment and connection-functionality to probes via lipids and surface groups on the outside. That application was here explored, together with a newly synthesized luminol derivative obtained by a simple synthesis route from commercial starting materials and exhibiting a four times increased ECL efficiency versus standard luminol. That was necessary as a liposome enhancement was denied for the standard luminol through its poor aqueous solubility. The new m-carboxy luminol considerably improved this feature which allowed its own encapsulation in liposomes. The superior signal generation with this dual system was proven in a model sandwich hybridization assay which yielded a 150-times better detection performance than the equal fluorescence-based assay while being almost zero affected through matrices like serum, soil or river water. As such the good performance of luminol ECL together with liposomes for highly sensitive detection applications was demonstrated. A further necessary element with liposomal amplification, are surfactants to set free the signaling molecules. However, this case depicts only one example of a multitude of applications of surfactants in bioassays and biochemical methods. Hence, surfactants are commonly present solution constituents which also have to be considered in general with ECL because they can influence the ECL signals positively or negatively. This was further investigated for luminol ECL by exploring the effect of 13 different surfactants on the luminol ECL efficiency on four different electrode materials. A deeper understanding of the distinct effects was obtained by looking into ECL emission behavior, electrochemical effects, the surfaces and Chemiluminescence effects. After all, the revelation of a complicated mechanism that involves many contributing factors and as such directs signal quenching or enhancement is an important finding for assay design. In this way, the selection of a suitable surfactant is possible to exploit maximum reachable signal efficiencies. A combination of signal enhancement tools like a better ECL molecule derivative, dendrimers, liposomes or surfactants has proven to boost the ECL performance considerably. A further means of signal enhancement is offered via miniaturization, which also makes the detection method better suited towards common application as liquid handling and easier automation are on hand. This can be used for single ECL assays or combinations of different ECL reagents in one system for multi-detection. Different strategies for the miniaturization of an ECL readout-capable system were investigated, taking requirements for [Ru(bpy)3]2+ and luminol as ECL reporters into account. This includes materials, electrochemical demands and simple design. Here, ITO electrodes – while advantageous for luminol ECL could not convince with their performance in [Ru(bpy)3]2+-ECL. Alternatively, laser scribed graphene electrodes have shown to be promising candidates for a future miniaturized system encompassing both, luminol and [Ru(bpy)3]2+ as ECL systems. Ultimately, the different signal amplifying strategies, investigated in this work that can be applied standalone or combined, offer a great toolset for state-of-the-art ECL detection applications in research and also for possible commercial applications
    • …
    corecore