202 research outputs found

    Characterization of cochlear implant artifacts in electrically evoked auditory steady-state responses

    Get PDF
    AbstractObjectiveElectrically evoked auditory steady-state responses (EASSRs) are neural potentials measured in the electroencephalogram (EEG) in response to periodic pulse trains presented, for example, through a cochlear implant (CI). EASSRs could potentially be used for objective CI fitting. However, EEG signals are contaminated with electrical CI artifacts. In this paper, we characterized the CI artifacts for monopolar mode stimulation and evaluated at which pulse rate, linear interpolation over the signal part contaminated with CI artifact is successful.MethodsCI artifacts were characterized by means of their amplitude growth functions and duration.ResultsCI artifact durations were between 0.7 and 1.7ms, at contralateral recording electrodes. At ipsilateral recording electrodes, CI artifact durations are range from 0.7 to larger than 2ms.ConclusionAt contralateral recording electrodes, the artifact was shorter than the interpulse interval across subjects for 500pps, which was not always the case for 900pps.SignificanceCI artifact-free EASSRs are crucial for reliable CI fitting and neuroscience research. The CI artifact has been characterized and linear interpolation allows to remove it at contralateral recording electrodes for stimulation at 500pps

    Neural Correlates of Binaural Interaction Using Aggregate-System Stimulation in Cochlear Implantees

    Get PDF
    The importance of binaural cues in auditory stream formation and sound source differentiation is widely accepted. When treating one ear with a cochlear implant (CI) the peripheral auditory system gets partially replaced and processing delays get added potentially, thus important interaural time encoding gets altered. This is a crucial problem because factors like the interaural time delay between the receiving ears are known to be responsible for facilitating such cues, e.g., sound source localization and separation. However, these effects are not fully understood, leaving a lack of systematic binaural fitting strategies with respect to an optimal binaural fusion. To gain new insights into such alterations, we suggest a novel method of free-field evoked auditory brainstem response (ABR) analysis in CI users. As a result, this method does not bypass the technically induced intrinsic delays of the hearing device while leaving the complete electrode array active, thus the most natural way of stimulation is provided and the comparable testing of real world stimuli gets facilitated. Unfortunately, ABRs acquired in CI users are additionally affected by the prominent artifact caused by their electrical stimulation, which severely distorts the desired neural response, thus challenging their analysis. To circumvent this problem, we further introduce a novel narrowband filtering CI artifact removal technique capable of obtaining neural correlates of ABRs in CI users. Consequently, we were able to compare brainstem-level responses collected of 12 CI users and 12 normal hearing listeners using two different stimuli (i.e., chirp and click) at four different intensities each, what comprises an adaption of the prominent brainstem evoked response audiometry serving as an additional evaluation criterion. We analyzed the responses using the average of 2,000 trials in combination with synchronized regularizations across them and found consistent results in their deflections and latencies, as well as in single trial relationships between both groups. This method provides a novel and unique perspective into the natural CI users’ brainstem-level responses and can be practical in future research regarding binaural interaction and fusion. Furthermore, the binaural interaction component (BIC), i.e., the arithmetical difference between the sum of both monaurally evoked ABRs and the binaurally evoked ABR, has been previously shown to be an objective indicator for binaural interaction. This component is unfortunately known to be rather fragile and as a result, a reliable, objective measure of binaural interaction in CI users does not exist to the present date. It is most likely that implantees would benefit from a reliable analysis of brainstem-level and subsequent higher-level binaural interaction, since this could objectively support fitting strategies with respect to a maximization of interaural integration. Therefore, we introduce a novel method capable of obtaining neural correlates of binaural interaction in bimodal CI users by combining recent advances in the field of fast, deconvolution-based ABR acquisitions with the introduced narrowband filtering technique. The proposed method shows a significant improvement in the magnitude of resulting BICs in 10 bimodal CI users and a control-group of 10 normal hearing subjects when compensating the interaural latency difference caused by the technical devices. In total, both proposed studies objectively demonstrate technical-driven interaural latency mismatches. Thus, they strongly emphasize potential benefits when balancing these interaural delays to improve binaural processing by significant increases in associated neural correlates of successful binaural interaction. These results and also the estimated latency differences should be investigated in larger group sizes to further consolidate the results, but confirm the demand for rather binaural solutions than treating hearing losses in an isolated monaural manner.Zusammenfassung Die Notwendigkeit binauraler Verarbeitungsprozesse in der auditorischen Wahrnehmung ist weitestgehend akzeptiert. Bei der Therapie eines Ohres mit einem Cochlea-Implantat (engl. cochlear implant (CI)) wird das periphere auditorische System teilweise ersetzt und verändert, sodass natürliche, interaurale Zeitauflösungen beeinflusst werden. Dieses Problem ist entscheidend, denn Faktoren wie interaurale Laufzeitunterschiede zwischen den aufnehmenden Ohren sind verantwortlich für die Umsetzung der erwähnten binauralen Verarbeitungsprozesse, z.B. Schallquellenlokalisation und -separation. Allerdings sind diese Effekte nicht ausreichend verstanden, weshalb bis heute binaurale Anpassstrategien mit Rücksicht auf eine optimale Fusionierung fehlen. Um neue Einsichten in solche zeitlichen Verzerrungen zu erhalten, schlagen wir ein neues Verfahren der Freifeld evozierten auditorischen Hirnstammpotentiale (engl. auditory brainstem response (ABR)) in CI-Nutzern vor. Diese Methode beinhaltet explizit technisch-induzierte Laufzeiten verwendeter Hörhilfen, sodass eine natürliche Stimulation unter Verwendung von realitätsnahen Stimuli ermöglicht wird. Unglücklicherweise sind ABRs von CI-Nutzern zusätzlich mit Stimulationsartefakten belastet, wodurch benötigte neurale Antworten weiter verzerrt werden und eine entsprechende Analyse der Signale deutlich erschwert wird. Um dieses Problem zu umgehen, schlagen wir eine neue Artefakt- Reduktionstechnik vor, welche auf spektraler Schmalbandfilterung basiert und somit den Erhalt entsprechender, neuraler ABR Korrelate ermöglicht. Diese Methoden erlaubten die Interpretation neuraler Korrelate auf Hirnstammebene unter Verwendung von zwei verschiedenen Stimuli (Chirps und Klicks) unter vier verschiedenen Lautstärken in 12 CI-Nutzern und 12 normalhörenden Probanden. Die beschriebene Prozedur adaptiert somit die weitläufig bekannte Hirnstammaudiometrie (engl. brainstem evoked response audiometry (BERA)), deren Ergebnisse zur zusätzlichen Evaluation des vorgestellten Verfahrens dienten. Die Untersuchung der aus 2000 Einzelantworten erhaltenen Mittelwerte in Kombination mit der Analyse synchronisierter Regularitäten über den Verlauf der Einzelantworten ergab dabei konsistente Beobachtungen in gefundenen Amplituden, Latenzen sowie in Abhängigkeiten zwischen Einzelantworten in beiden Gruppen. Das vorgestellte Verfahren erlaubt somit auf einzigartige Weise neue und ungesehene Einsichten in natürliche, neurale Antworten auf Hirnstammebene von CI-Nutzern, welche in zukünftigen Studien verwendet werden können, um binaurale Interaktionen und Fusionen weiter untersuchen zu können. Interessanterweise hat sich, die auf ABRs basierende, binaurale Interaktionskomponente (engl. binaural interaction component (BIC)) als objektiver Indikator binauraler Integration etabliert. Diese Komponente (d.h. die arithmetische Differenz zwischen der Summe der monauralen Antworten und der binauralen Antwort) ist leider sehr fragil, wodurch ein sicherer und objektiver Nachweis in CI-Nutzern bis heute nicht existiert. Dabei ist es sehr wahrscheinlich, dass gerade Implantatsträger von einer entsprechenden Analyse auf Hirnstammebene und höherrangigen Ebenen deutlich profitieren würden, da dies objektiv Anpassstrategien mit Rücksicht auf eine bestmögliche binaurale Integration ermöglichen könnte. Deshalb stellen wir ein weiteres, neuartiges Verfahren zum Erhalt von neuralen Korrelaten binauraler Interaktion in bimodal versorgten CI-Trägern vor, welches jüngste Erfolge im Bereich der schnellen, entfalltungsbasierten ABR Akquisition und der bereits vorgestellten Schmalband- filterung zur Reduktion von Stimulationsartefakten kombiniert. Basierend auf diesem Verfahren konnten signifikante Verbesserungen in der BIC-Amplitude in 10 bimodal versorgten Patienten sowie 10 normalhörenden Probanden, basierend auf umgesetzte, interaurale Laufzeitkompensationen technischer Hörhilfen, aufgezeigt werden. Insgesamt demonstrieren beide vorgestellten Studien technisch-induzierte, interaurale Laufzeitunterschiede und betonen demnach sehr deutlich potenzielle Vorteile in assoziierten neuralen Korrelaten binauraler Interaktionen, wenn solche Missverhältnisse zeitlich ausgeglichen werden. Die aufgezeigten Ergebnisse sowie die getätigte Abschätzungen technischer Laufzeiten sollte in größeren Gruppen weiter untersucht werden, um die Aussagekraft weiter zu steigern. Dennoch unterstreichen diese Einsichten das Verlangen nach binauralen Lösungsansätzen in der zukünftigen Hörrehabilitation, statt bisheriger isolierter und monauraler Therapien

    The Electrically Evoked Compound Action Potential: From Laboratory to Clinic

    Get PDF
    The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed

    Electrophysiological assessment of temporal envelope processing in cochlear implant users

    Get PDF
    Abstract: Cochlear-implant (CI) users rely on temporal envelope modulations (TEMs) to understand speech, and clinical outcomes depend on the accuracy with which these TEMs are encoded by the electrically-stimulated neural ensembles. Non-invasive EEG measures of this encoding could help clinicians identify and disable electrodes that evoke poor neural responses so as to improve CI outcomes. However, recording EEG during CI stimulation reveals huge stimulation artifacts that are up to orders of magnitude larger than the neural response. Here we used a custom-built EEG system having an exceptionally high sample rate to accurately measure the artefact, which we then removed using linear interpolation so as to reveal the neural response during continuous electrical stimulation. In ten adult CI users, we measured the 40-Hz electrically evoked auditory steady-state response (eASSR) and electrically evoked auditory change complex (eACC) to amplitude-modulated 900-pulses-per-second pulse trains, stimulated in monopolar mode (i.e. the clinical default), and at different modulation depths. We successfully measured artifact-free 40-Hz eASSRs and eACCs. Moreover, we found that the 40-Hz eASSR, in contrast to the eACC, showed substantial responses even at shallow modulation depths. We argue that the 40-Hz eASSR is a clinically feasible objective measure to assess TEM encoding in CI users

    Development and significance of the spatial auditory change complex in adult cochlear implant users

    Get PDF
    Despite their great success, cochlear implants (CIs) are associated with a wide range in speech perception outcomes. Interactions of electrode contacts on the CI array, resulting in impaired transmission of the auditory signal, may contribute to poor outcome in certain individuals. The aim of this thesis was to determine whether the spatial auditory change complex (ACC), an electrophysiological measure of electrode discrimination, could be used to objectively assess electrode independence, with a view to using this as a clinical tool for patient assessment. In a series of experiments, the spatial ACC and behavioural electrode discrimination were measured in adult CI users. It was found that it is feasible to measure the spatial ACC in CI devices from different manufacturers and during the early period after switch-on. There was a strong relationship between objective and behavioural measures of electrode discrimination and in several cases, the development of the spatial ACC preceded accurate behavioural discrimination. Longitudinal measurements revealed that the amplitude of the spatial ACC and behavioural discrimination scores increased significantly over the first 6 to 12 months of CI use, providing evidence for auditory plasticity. The time course of adaptation varied substantially, and was slower and more limited in certain individuals. Speech perception was found to be more consistently related to behavioural measures of electrode discrimination than to the spatial ACC. Increasing stimulus intensity led to a significant increase in the spatial ACC amplitude and behavioural discrimination scores. By altering the recording setup and stimulus characteristics, the efficiency and sensitivity of spatial ACC measurements could be improved. These findings show that the spatial ACC provides a useful measure of electrode independence. It is proposed that these measurements could be used to guide clinical interventions that lead to improved hearing outcome in CI users

    Assessment of Utricular Nerve, Hair Cell and Mechanical Function, in vivo.

    Get PDF
    Vestibular research currently relies on single response measures such as ex vivo hair cell and in vivo single unit recordings. Although these methods allow detailed insight into the response properties of individual vestibular hair cells and neurons, they do not provide a holistic understanding of peripheral vestibular functioning and its relationship to vestibular pathology in a living system. For this to take place, in vivo recordings of peripheral vestibular nerve, hair cell and mechanical function are needed. The previous inability to record vestibular hair cell responses stemmed from a difficulty in accessing the vestibular end-organs and stimulating them in isolation of the cochlea. To circumvent this, we developed a ventral surgical approach, removing the cochlea, to provide full access to the basal surface of the utricular macula. This allowed functional and mechanical utricular hair cell recordings, alongside gross utricular nerve responses. Recordings were performed in anaesthetized guinea pigs using Bone Conducted Vibration (BCV) and Air Conducted Sound (ACS) stimuli, providing a clinical link to vestibular reflex testing. We have thus far performed experiments involving: 1) Selective manipulation of vestibular nerve function, using electrical stimulation of the central vestibular system. 2) Glass micropipette recordings from the basal surface of the macular epithelium, which provided a robust and localized measure of extracellular utricular hair cell function. 3) With the macular exposed, we have measured the dynamic motion of the macula using Laser Doppler Vibrometry, which was recorded alongside the hair cell and nerve response recordings. 4) We have used physiological and pharmacological experimental manipulations to selectively modulate utricular nerve, hair cell or mechanical function, demonstrating the ability to differentially diagnose the basis of peripheral vestibular disorders in the mammalian utricle. These tools allow for a more complete understanding of peripheral vestibular function and a first order perspective into clinical disorders effecting the otoliths
    corecore