122 research outputs found

    Matroidal approaches to rough sets via closure operators

    Get PDF
    AbstractThis paper studies rough sets from the operator-oriented view by matroidal approaches. We firstly investigate some kinds of closure operators and conclude that the Pawlak upper approximation operator is just a topological and matroidal closure operator. Then we characterize the Pawlak upper approximation operator in terms of the closure operator in Pawlak matroids, which are first defined in this paper, and are generalized to fundamental matroids when partitions are generalized to coverings. A new covering-based rough set model is then proposed based on fundamental matroids and properties of this model are studied. Lastly, we refer to the abstract approximation space, whose original definition is modified to get a one-to-one correspondence between closure systems (operators) and concrete models of abstract approximation spaces. We finally examine the relations of four kinds of abstract approximation spaces, which correspond exactly to the relations of closure systems

    Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-HyperSpherical Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited)

    Get PDF
    In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic components is \u3c 1, or \u3e 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, besides independent components, also partially independent and partially dependent components, while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we can construct different approaches to various neutrosophic concepts. Neutrosophic Set (NS) is also a generalization of Inconsistent Intuitionistic Fuzzy Set (IIFS) { which is equivalent to the Picture Fuzzy Set (PFS) and Ternary Fuzzy Set (TFS) }, Pythagorean Fuzzy Set (PyFS), Spherical Fuzzy Set (SFS), n-HyperSpherical Fuzzy Set (n-HSFS), and q-Rung Orthopair Fuzzy Set (q-ROFS). And all these sets are more general than Intuitionistic Fuzzy Set. We prove that Atanassov’s Intuitionistic Fuzzy Set of second type (IFS2), and Spherical Fuzzy Sets (SFS) do not have independent components. And we show that n-HyperSphericalFuzzy Set that we now introduce for the first time, Spherical Neutrosophic Set (SNS) and n-HyperSpherical Neutrosophic Set (n-HSNS) {the last one also introduced now for the first time} are generalizations of IFS2 and SFS. The main distinction between Neutrosophic Set (NS) and all previous set theories are: a) the independence of all three neutrosophic components {truth-membership (T), indeterminacy-membership (I), falsehood-nonmembership (F)} with respect to each other in NS – while in the previous set theories their components are dependent of each other; and b) the importance of indeterminacy in NS - while in previous set theories indeterminacy is completely or partially ignored. Also, Regret Theory, Grey System Theory, and Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. We have extended the Three-Ways Decision to n-Ways Decision

    Computer-Aided Discovery and Categorisation of Personality Axioms

    Full text link
    We propose a computer-algebraic, order-theoretic framework based on intuitionistic logic for the computer-aided discovery of personality axioms from personality-test data and their mathematical categorisation into formal personality theories in the spirit of F.~Klein's Erlanger Programm for geometrical theories. As a result, formal personality theories can be automatically generated, diagrammatically visualised, and mathematically characterised in terms of categories of invariant-preserving transformations in the sense of Klein and category theory. Our personality theories and categories are induced by implicational invariants that are ground instances of intuitionistic implication, which we postulate as axioms. In our mindset, the essence of personality, and thus mental health and illness, is its invariance. The truth of these axioms is algorithmically extracted from histories of partially-ordered, symbolic data of observed behaviour. The personality-test data and the personality theories are related by a Galois-connection in our framework. As data format, we adopt the format of the symbolic values generated by the Szondi-test, a personality test based on L.~Szondi's unifying, depth-psychological theory of fate analysis.Comment: related to arXiv:1403.200

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    Nidus Idearum. Scilogs, IX: neutrosophia perennis

    Get PDF
    In this ninth book of scilogs collected from my nest of ideas, one may find new and old questions and solutions, – in email messages to research colleagues, or replies, and personal notes, some handwritten on the planes to, and from international conferences, about topics on Neutrosophy and its applications, such as: Neutrosophic Bipolar Set, Linguistic Neutrosophic Set, Neutrosophic Resonance Frequency, n-ary HyperAlgebra, n-ary NeutroHyperAlgebra, n-ary AntiHyperAlgebra, Plithogenic Crisp Graph, Plithogenic Fuzzy Graph, Plithogenic Intuitionistic Fuzzy Graph, Plithogenic Neutrosophic Graph, Plithogenic Real Number Graph, Plithogenic Complex Number Graph, Plithogenic Neutrosophic Number Graph, and many more. Exchanging ideas with: Tareq Al-Shami, Riad Khidr Al-hamido, Mohammad Akram, B. De Baets, Robert Neil Boyd, Said Broumi, Terman Frometa-Castillo, Yilmaz Ceven, D. Dubois, Harish Garg, L. Godo, Erik Gonzalez, Yanhui Guo, Mohammad Hamidi, E. Hüllermeier, W. B. Vasantha Kandasamy, Mary Jansi, Nivetha Martin, Mani Parimala, Akbar Rezaei, Bouzina Salah, Christy Vincent, Jun Ye.‬‬
    • …
    corecore