46 research outputs found

    Indefinitely Oscillating Martingales

    Full text link
    We construct a class of nonnegative martingale processes that oscillate indefinitely with high probability. For these processes, we state a uniform rate of the number of oscillations and show that this rate is asymptotically close to the theoretical upper bound. These bounds on probability and expectation of the number of upcrossings are compared to classical bounds from the martingale literature. We discuss two applications. First, our results imply that the limit of the minimum description length operator may not exist. Second, we give bounds on how often one can change one's belief in a given hypothesis when observing a stream of data.Comment: ALT 2014, extended technical repor

    Indefinitely oscillating martingales

    Get PDF
    We construct a class of nonnegative martingale processes that oscillate indefinitely with high probability. For these processes, we state a uniform rate of the number of oscillations for a given magnitude and show that this rate is asymptotically close to the theoretical upper bound. These bounds on probability and expectation of the number of upcrossings are compared to classical bounds from the martingale literature. We discuss two applications. First, our results imply that the limit of the minimum description length operator may not exist. Second, we give bounds on how often one can change one’s belief in a given hypothesis when observing a stream of data

    A Switching Fluid Limit of a Stochastic Network Under a State-Space-Collapse Inducing Control with Chattering

    Full text link
    Routing mechanisms for stochastic networks are often designed to produce state space collapse (SSC) in a heavy-traffic limit, i.e., to confine the limiting process to a lower-dimensional subset of its full state space. In a fluid limit, a control producing asymptotic SSC corresponds to an ideal sliding mode control that forces the fluid trajectories to a lower-dimensional sliding manifold. Within deterministic dynamical systems theory, it is well known that sliding-mode controls can cause the system to chatter back and forth along the sliding manifold due to delays in activation of the control. For the prelimit stochastic system, chattering implies fluid-scaled fluctuations that are larger than typical stochastic fluctuations. In this paper we show that chattering can occur in the fluid limit of a controlled stochastic network when inappropriate control parameters are used. The model has two large service pools operating under the fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we proposed in a recent paper. We now show that, if the control parameters are not chosen properly, then delays in activating and releasing the control can cause chattering with large oscillations in the fluid limit. In turn, these fluid-scaled fluctuations lead to severe congestion, even when the arrival rates are smaller than the potential total service rate in the system, a phenomenon referred to as congestion collapse. We show that the fluid limit can be a bi-stable switching system possessing a unique nontrivial periodic equilibrium, in addition to a unique stationary point

    Test Martingales, Bayes Factors and pp-Values

    Get PDF
    A nonnegative martingale with initial value equal to one measures evidence against a probabilistic hypothesis. The inverse of its value at some stopping time can be interpreted as a Bayes factor. If we exaggerate the evidence by considering the largest value attained so far by such a martingale, the exaggeration will be limited, and there are systematic ways to eliminate it. The inverse of the exaggerated value at some stopping time can be interpreted as a pp-value. We give a simple characterization of all increasing functions that eliminate the exaggeration.Comment: Published in at http://dx.doi.org/10.1214/10-STS347 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simulation of a Brownian particle in an optical trap

    Get PDF
    Cataloged from PDF version of article.Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution-a clear signature of their out-of-equilibrium nature- and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted. (C) 2014 American Association of Physics Teachers

    Randomness and early termination: what makes a game exciting?

    Full text link
    In this paper we revisit an open problem posed by Aldous on the max-entropy win-probability martingale: given two players of equal strength, such that the win-probability is a martingale diffusion, which of these processes has maximum entropy and hence gives the most excitement for the spectators? We study a terminal-boundary value problem for the nonlinear parabolic PDE 2∂te(t,x)=log⁡(−∂xxe(t,x))2\partial_te(t,x)=\log(-\partial_{xx}e(t,x)) derived by Aldous and prove its wellposedness and regularity of its solution by combining PDE analysis and probabilistic tools, in particular the reformulation as a stochastic control problem with restricted control set, which allows us to deduce strict ellipticity. We establish key qualitative properties of the solution including concavity, monotonicity, convergence to a steady state for long remaining time and the asymptotic behaviour shortly before the terminal time. Moreover, we construct convergent numerical approximations. The analytical and numerical results allow us to highlight the behaviour of the win-probability process in the present case where the match may end early, in contrast to recent work by Backhoff-Veraguas and Beiglb\"ock where the match always runs the full length

    Offline to Online Conversion

    Full text link
    We consider the problem of converting offline estimators into an online predictor or estimator with small extra regret. Formally this is the problem of merging a collection of probability measures over strings of length 1,2,3,... into a single probability measure over infinite sequences. We describe various approaches and their pros and cons on various examples. As a side-result we give an elementary non-heuristic purely combinatoric derivation of Turing's famous estimator. Our main technical contribution is to determine the computational complexity of online estimators with good guarantees in general.Comment: 20 LaTeX page

    Detecting Markov Chain Instability: A Monte Carlo Approach

    Get PDF
    We devise a Monte Carlo based method for detecting whether a non-negative Markov chain is stable for a given set of parameter values. More precisely, for a given subset of the parameter space, we develop an algorithm that is capable of deciding whether the set has a subset of positive Lebesgue measure for which the Markov chain is unstable. The approach is based on a variant of simulated annealing, and consequently only mild assumptions are needed to obtain performance guarantees. The theoretical underpinnings of our algorithm are based on a result stating that the stability of a set of parameters can be phrased in terms of the stability of a single Markov chain that searches the set for unstable parameters. Our framework leads to a procedure that is capable of performing statistically rigorous tests for instability, which has been extensively tested using several examples of standard and non-standard queueing networks

    A flow-based approach to rough differential equations

    Full text link
    These are lecture notes for a Master 2 course on rough differential equations driven by weak geometric Holder p-rough paths, for any p>2. They provide a short, self-contained and pedagogical account of the theory, with an emphasis on flows. The theory is illustrated by some now classical applications to stochastic analysis, such as the basics of Freidlin-Wentzel theory of large deviations for diffusions, or Stroock and Varadhan support theorem.Comment: 63 page
    corecore