831 research outputs found

    Incremental Perspective for Feature Selection Based on Fuzzy Rough Sets

    Get PDF

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space

    An Intelligent Decision Support System for Business IT Security Strategy

    Get PDF
    Cyber threat intelligence (CTI) is an emerging approach to improve cyber security of business IT environment. It has information of an a ected business IT context. CTI sharing tools are available for subscribers, and CTI feeds are increasingly available. If another business IT context is similar to a CTI feed context, the threat described in the CTI feed might also take place in the business IT context. Businesses can take proactive defensive actions if relevant CTI is identi ed. However, a challenge is how to develop an e ective connection strategy for CTI onto business IT contexts. Businesses are still insu ciently using CTI because not all of them have su cient knowledge from domain experts. Moreover, business IT contexts vary over time. When the business IT contextual states have changed, the relevant CTI might be no longer appropriate and applicable. Another challenge is how a connection strategy has the ability to adapt to the business IT contextual changes. To ll the gap, in this Ph.D project, a dynamic connection strategy for CTI onto business IT contexts is proposed and the strategy is instantiated to be a dynamic connection rule assembly system. The system can identify relevant CTI for a business IT context and can modify its internal con gurations and structures to adapt to the business IT contextual changes. This thesis introduces the system development phases from design to delivery, and the contributions to knowledge are explained as follows. A hybrid representation of the dynamic connection strategy is proposed to generalise and interpret the problem domain and the system development. The representation uses selected computational intelligence models and software development models. In terms of the computational intelligence models, a CTI feed context and a business IT context are generalised to be the same type, i.e., context object. Grey number model is selected to represent the attribute values of context objects. Fuzzy sets are used to represent the context objects, and linguistic densities of the attribute values of context objects are reasoned. To assemble applicable connection knowledge, the system constructs a set of connection objects based on the context objects and uses rough set operations to extract applicable connection objects that contain the connection knowledge. Furthermore, to adapt to contextual changes, a rough set based incremental updating approach with multiple operations is developed to incrementally update the approximations. A set of propositions are proposed to describe how the system changes based on the previous states and internal structures of the system, and their complexities and e ciencies are analysed. In terms of the software development models, some uni ed modelling language (UML) models are selected to represent the system in design phase. Activity diagram is used to represent the business process of the system. Use case diagram is used to represent the human interactions with the system. Class diagram is used to represent the internal components and relationships between them. Using the representation, developers can develop a prototype of the system rapidly. Using the representation, an application of the system is developed using mainstream software development techniques. RESTful software architecture is used for the communication of the business IT contextual information and the analysis results using CTI between the server and the clients. A script based method is deployed in the clients to collect the contextual information. Observer pattern and a timer are used for the design and development of the monitor-trigger mechanism. In summary, the representation generalises real-world cases in the problem domain and interprets the system data. A speci c business can initialise an instance of the representation to be a speci c system based on its IT context and CTI feeds, and the knowledge assembled by the system can be used to identify relevant CTI feeds. From the relevant CTI data, the system locates and retrieves the useful information that can inform security decisions and then sends it to the client users. When the system needs to modify itself to adapt to the business IT contextual changes, the system can invoke the corresponding incremental updating functions and avoid a time-consuming re-computation. With this updating strategy, the application can provide its users in the client side with timely support and useful information that can inform security decisions using CTI

    Scalable approximate FRNN-OWA classification

    Get PDF
    Fuzzy Rough Nearest Neighbour classification with Ordered Weighted Averaging operators (FRNN-OWA) is an algorithm that classifies unseen instances according to their membership in the fuzzy upper and lower approximations of the decision classes. Previous research has shown that the use of OWA operators increases the robustness of this model. However, calculating membership in an approximation requires a nearest neighbour search. In practice, the query time complexity of exact nearest neighbour search algorithms in more than a handful of dimensions is near-linear, which limits the scalability of FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a modified model that calculates upper and lower approximations of decision classes using the approximate nearest neighbours returned by Hierarchical Navigable Small Worlds (HNSW), a recent approximative nearest neighbour search algorithm with logarithmic query time complexity at constant near-100% accuracy. We demonstrate that approximate FRNN-OWA is sufficiently robust to match the classification accuracy of exact FRNN-OWA while scaling much more efficiently. We test four parameter configurations of HNSW, and evaluate their performance by measuring classification accuracy and construction and query times for samples of various sizes from three large datasets. We find that with two of the parameter configurations, approximate FRNN-OWA achieves near-identical accuracy to exact FRNN-OWA for most sample sizes within query times that are up to several orders of magnitude faster

    EEG-Based Biometric Authentication Modelling Using Incremental Fuzzy-Rough Nearest Neighbour Technique

    Get PDF
    This paper proposes an Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique for biometric authentication modelling using feature extracted visual evoked. Only small training set is needed for model initialisation. The embedded heuristic update method adjusts the knowledge granules incrementally to maintain all representative electroencephalogram (EEG) signal patterns and eliminate those rarely used. It reshapes the personalized knowledge granules through insertion and deletion of a test object, based on similarity measures. A predefined window size can be used to reduce the overall processing time. This proposed algorithm was verified with test data from 37 healthy subjects. Signal pre-processing steps on segmentation, filtering and artefact rejection were carried out to improve the data quality before model building. The experimental paradigm was designed in three different conditions to evaluate the authentication performance of the IncFRNN technique against the benchmarked incremental K-Nearest Neighbour (KNN) technique. The performance was measured in terms of accuracy, area under the Receiver Operating Characteristic (ROC) curve (AUC) and Cohen's Kappa coefficient. The proposed IncFRNN technique is proven to be statistically better than the KNN technique in the controlled window size environment. Future work will focus on the use of dynamic data features to improve the robustness of the proposed model

    Multigranulation Super-Trust Model for Attribute Reduction

    Get PDF
    IEEE As big data often contains a significant amount of uncertain, unstructured and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this paper, we present a novel multigranulation super-trust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation super-trust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme is adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular-coevolution is employed to ensure a wide range of balancing of exploration and exploitation and can classify super elitists’ preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variables

    Coevolutionary fuzzy attribute order reduction with complete attribute-value space tree

    Get PDF
    Since big data sets are structurally complex, high-dimensional, and their attributes exhibit some redundant and irrelevant information, the selection, evaluation, and combination of those large-scale attributes pose huge challenges to traditional methods. Fuzzy rough sets have emerged as a powerful vehicle to deal with uncertain and fuzzy attributes in big data problems that involve a very large number of variables to be analyzed in a very short time. In order to further overcome the inefficiency of traditional algorithms in the uncertain and fuzzy big data, in this paper we present a new coevolutionary fuzzy attribute order reduction algorithm (CFAOR) based on a complete attribute-value space tree. A complete attribute-value space tree model of decision table is designed in the attribute space to adaptively prune and optimize the attribute order tree. The fuzzy similarity of multimodality attributes can be extracted to satisfy the needs of users with the better convergence speed and classification performance. Then, the decision rule sets generate a series of rule chains to form an efficient cascade attribute order reduction and classification with a rough entropy threshold. Finally, the performance of CFAOR is assessed with a set of benchmark problems that contain complex high dimensional datasets with noise. The experimental results demonstrate that CFAOR can achieve the higher average computational efficiency and classification accuracy, compared with the state-of-the-art methods. Furthermore, CFAOR is applied to extract different tissues surfaces of dynamical changing infant cerebral cortex and it achieves a satisfying consistency with those of medical experts, which shows its potential significance for the disorder prediction of infant cerebrum

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version
    corecore