789 research outputs found

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting

    Get PDF
    Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-nary matching to map the temporal MRF signals to quantitative tissue parameters. Such approaches suffer from inherent discretization errors, as well as high computational complexity as the dictionary size grows. To alleviate these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA. Methods: HYDRA involves two stages: a model-based signature restoration phase and a learning-based parameter restoration phase. Signal restoration is implemented using low-rank based de-aliasing techniques while parameter restoration is performed using a deep nonlocal residual convolutional neural network. The designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF signal as input and produces the corresponding tissue parameters. Results: We validated our approach on both synthetic data and anatomical data generated from a healthy subject. The results demonstrate that, in contrast to conventional dictionary-matching based MRF techniques, our approach significantly improves inference speed by eliminating the time-consuming dictionary matching operation, and alleviates discretization errors by outputting continuous-valued parameters. We further avoid the need to store a large dictionary, thus reducing memory requirements. Conclusions: Our approach demonstrates advantages in terms of inference speed, accuracy and storage requirements over competing MRF method

    CFN-ESA: A Cross-Modal Fusion Network with Emotion-Shift Awareness for Dialogue Emotion Recognition

    Full text link
    Multimodal Emotion Recognition in Conversation (ERC) has garnered growing attention from research communities in various fields. In this paper, we propose a cross-modal fusion network with emotion-shift awareness (CFN-ESA) for ERC. Extant approaches employ each modality equally without distinguishing the amount of emotional information, rendering it hard to adequately extract complementary and associative information from multimodal data. To cope with this problem, in CFN-ESA, textual modalities are treated as the primary source of emotional information, while visual and acoustic modalities are taken as the secondary sources. Besides, most multimodal ERC models ignore emotion-shift information and overfocus on contextual information, leading to the failure of emotion recognition under emotion-shift scenario. We elaborate an emotion-shift module to address this challenge. CFN-ESA mainly consists of the unimodal encoder (RUME), cross-modal encoder (ACME), and emotion-shift module (LESM). RUME is applied to extract conversation-level contextual emotional cues while pulling together the data distributions between modalities; ACME is utilized to perform multimodal interaction centered on textual modality; LESM is used to model emotion shift and capture related information, thereby guide the learning of the main task. Experimental results demonstrate that CFN-ESA can effectively promote performance for ERC and remarkably outperform the state-of-the-art models.Comment: 13 pages, 10 figure
    • …
    corecore