1,239 research outputs found

    Methods of Hierarchical Clustering

    Get PDF
    We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self-organizing maps, and mixture models. We review grid-based clustering, focusing on hierarchical density-based approaches. Finally we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid-based algorithm.Comment: 21 pages, 2 figures, 1 table, 69 reference

    A Survey on Few-Shot Class-Incremental Learning

    Full text link
    Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta-learning based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    AutoEncoding Tree for City Generation and Applications

    Full text link
    City modeling and generation have attracted an increased interest in various applications, including gaming, urban planning, and autonomous driving. Unlike previous works focused on the generation of single objects or indoor scenes, the huge volumes of spatial data in cities pose a challenge to the generative models. Furthermore, few publicly available 3D real-world city datasets also hinder the development of methods for city generation. In this paper, we first collect over 3,000,000 geo-referenced objects for the city of New York, Zurich, Tokyo, Berlin, Boston and several other large cities. Based on this dataset, we propose AETree, a tree-structured auto-encoder neural network, for city generation. Specifically, we first propose a novel Spatial-Geometric Distance (SGD) metric to measure the similarity between building layouts and then construct a binary tree over the raw geometric data of building based on the SGD metric. Next, we present a tree-structured network whose encoder learns to extract and merge spatial information from bottom-up iteratively. The resulting global representation is reversely decoded for reconstruction or generation. To address the issue of long-dependency as the level of the tree increases, a Long Short-Term Memory (LSTM) Cell is employed as a basic network element of the proposed AETree. Moreover, we introduce a novel metric, Overlapping Area Ratio (OAR), to quantitatively evaluate the generation results. Experiments on the collected dataset demonstrate the effectiveness of the proposed model on 2D and 3D city generation. Furthermore, the latent features learned by AETree can serve downstream urban planning applications
    • …
    corecore