28,755 research outputs found

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    Cooperative co-evolution of GA-based classifiers based on input increments

    Get PDF
    Genetic algorithms (GAs) have been widely used as soft computing techniques in various applications, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is proposed in the application domain of pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA. Some analysis and discussions on ECCGA and possible improvement are also presented

    Analysis and extension of the Inc* on the satisfiability testing problem

    Get PDF
    corecore