4,364 research outputs found

    Large Scale SfM with the Distributed Camera Model

    Full text link
    We introduce the distributed camera model, a novel model for Structure-from-Motion (SfM). This model describes image observations in terms of light rays with ray origins and directions rather than pixels. As such, the proposed model is capable of describing a single camera or multiple cameras simultaneously as the collection of all light rays observed. We show how the distributed camera model is a generalization of the standard camera model and describe a general formulation and solution to the absolute camera pose problem that works for standard or distributed cameras. The proposed method computes a solution that is up to 8 times more efficient and robust to rotation singularities in comparison with gDLS. Finally, this method is used in an novel large-scale incremental SfM pipeline where distributed cameras are accurately and robustly merged together. This pipeline is a direct generalization of traditional incremental SfM; however, instead of incrementally adding one camera at a time to grow the reconstruction the reconstruction is grown by adding a distributed camera. Our pipeline produces highly accurate reconstructions efficiently by avoiding the need for many bundle adjustment iterations and is capable of computing a 3D model of Rome from over 15,000 images in just 22 minutes.Comment: Published at 2016 3DV Conferenc

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI

    Direct Monocular Odometry Using Points and Lines

    Full text link
    Most visual odometry algorithm for a monocular camera focuses on points, either by feature matching, or direct alignment of pixel intensity, while ignoring a common but important geometry entity: edges. In this paper, we propose an odometry algorithm that combines points and edges to benefit from the advantages of both direct and feature based methods. It works better in texture-less environments and is also more robust to lighting changes and fast motion by increasing the convergence basin. We maintain a depth map for the keyframe then in the tracking part, the camera pose is recovered by minimizing both the photometric error and geometric error to the matched edge in a probabilistic framework. In the mapping part, edge is used to speed up and increase stereo matching accuracy. On various public datasets, our algorithm achieves better or comparable performance than state-of-the-art monocular odometry methods. In some challenging texture-less environments, our algorithm reduces the state estimation error over 50%.Comment: ICRA 201

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Visual Odometry and Sparse Scene Reconstruction for UAVs with a Multi-Fisheye Camera System

    Get PDF
    Autonomously operating UAVs demand a fast localization for navigation, to actively explore unknown areas and to create maps. For pose estimation, many UAV systems make use of a combination of GPS receivers and inertial sensor units (IMU). However, GPS signal coverage may go down occasionally, especially in the close vicinity of objects, and precise IMUs are too heavy to be carried by lightweight UAVs. This and the high cost of high quality IMU motivate the use of inexpensive vision based sensors for localization using visual odometry or visual SLAM (simultaneous localization and mapping) techniques. The first contribution of this thesis is a more general approach to bundle adjustment with an extended version of the projective coplanarity equation which enables us to make use of omnidirectional multi-camera systems which may consist of fisheye cameras that can capture a large field of view with one shot. We use ray directions as observations instead of image points which is why our approach does not rely on a specific projection model assuming a central projection. In addition, our approach allows the integration and estimation of points at infinity, which classical bundle adjustments are not capable of. We show that the integration of far or infinitely far points stabilizes the estimation of the rotation angles of the camera poses. In its second contribution, we employ this approach to bundle adjustment in a highly integrated system for incremental pose estimation and mapping on light-weight UAVs. Based on the image sequences of a multi-camera system our system makes use of tracked feature points to incrementally build a sparse map and incrementally refines this map using the iSAM2 algorithm. Our system is able to optionally integrate GPS information on the level of carrier phase observations even in underconstrained situations, e.g. if only two satellites are visible, for georeferenced pose estimation. This way, we are able to use all available information in underconstrained GPS situations to keep the mapped 3D model accurate and georeferenced. In its third contribution, we present an approach for re-using existing methods for dense stereo matching with fisheye cameras, which has the advantage that highly optimized existing methods can be applied as a black-box without modifications even with cameras that have field of view of more than 180 deg. We provide a detailed accuracy analysis of the obtained dense stereo results. The accuracy analysis shows the growing uncertainty of observed image points of fisheye cameras due to increasing blur towards the image border. Core of the contribution is a rigorous variance component estimation which allows to estimate the variance of the observed disparities at an image point as a function of the distance of that point to the principal point. We show that this improved stochastic model provides a more realistic prediction of the uncertainty of the triangulated 3D points.Autonom operierende UAVs benötigen eine schnelle Lokalisierung zur Navigation, zur Exploration unbekannter Umgebungen und zur Kartierung. Zur Posenbestimmung verwenden viele UAV-Systeme eine Kombination aus GPS-Empfängern und Inertial-Messeinheiten (IMU). Die Verfügbarkeit von GPS-Signalen ist jedoch nicht überall gewährleistet, insbesondere in der Nähe abschattender Objekte, und präzise IMUs sind für leichtgewichtige UAVs zu schwer. Auch die hohen Kosten qualitativ hochwertiger IMUs motivieren den Einsatz von kostengünstigen bildgebenden Sensoren zur Lokalisierung mittels visueller Odometrie oder SLAM-Techniken zur simultanen Lokalisierung und Kartierung. Im ersten wissenschaftlichen Beitrag dieser Arbeit entwickeln wir einen allgemeineren Ansatz für die Bündelausgleichung mit einem erweiterten Modell für die projektive Kollinearitätsgleichung, sodass auch omnidirektionale Multikamerasysteme verwendet werden können, welche beispielsweise bestehend aus Fisheyekameras mit einer Aufnahme einen großen Sichtbereich abdecken. Durch die Integration von Strahlrichtungen als Beobachtungen ist unser Ansatz nicht von einem kameraspezifischen Abbildungsmodell abhängig solange dieses der Zentralprojektion folgt. Zudem erlaubt unser Ansatz die Integration und Schätzung von unendlich fernen Punkten, was bei klassischen Bündelausgleichungen nicht möglich ist. Wir zeigen, dass durch die Integration weit entfernter und unendlich ferner Punkte die Schätzung der Rotationswinkel der Kameraposen stabilisiert werden kann. Im zweiten Beitrag verwenden wir diesen entwickelten Ansatz zur Bündelausgleichung für ein System zur inkrementellen Posenschätzung und dünnbesetzten Kartierung auf einem leichtgewichtigen UAV. Basierend auf den Bildsequenzen eines Mulitkamerasystems baut unser System mittels verfolgter markanter Bildpunkte inkrementell eine dünnbesetzte Karte auf und verfeinert diese inkrementell mittels des iSAM2-Algorithmus. Unser System ist in der Lage optional auch GPS Informationen auf dem Level von GPS-Trägerphasen zu integrieren, wodurch sogar in unterbestimmten Situation - beispielsweise bei nur zwei verfügbaren Satelliten - diese Informationen zur georeferenzierten Posenschätzung verwendet werden können. Im dritten Beitrag stellen wir einen Ansatz zur Verwendung existierender Methoden für dichtes Stereomatching mit Fisheyekameras vor, sodass hoch optimierte existierende Methoden als Black Box ohne Modifzierungen sogar mit Kameras mit einem Gesichtsfeld von mehr als 180 Grad verwendet werden können. Wir stellen eine detaillierte Genauigkeitsanalyse basierend auf dem Ergebnis des dichten Stereomatchings dar. Die Genauigkeitsanalyse zeigt, wie stark die Genauigkeit beobachteter Bildpunkte bei Fisheyekameras zum Bildrand aufgrund von zunehmender Unschärfe abnimmt. Das Kernstück dieses Beitrags ist eine Varianzkomponentenschätzung, welche die Schätzung der Varianz der beobachteten Disparitäten an einem Bildpunkt als Funktion von der Distanz dieses Punktes zum Hauptpunkt des Bildes ermöglicht. Wir zeigen, dass dieses verbesserte stochastische Modell eine realistischere Prädiktion der Genauigkeiten der 3D Punkte ermöglicht
    • …
    corecore