1,980 research outputs found

    Joint Scheduling and ARQ for MU-MIMO Downlink in the Presence of Inter-Cell Interference

    Full text link
    User scheduling and multiuser multi-antenna (MU-MIMO) transmission are at the core of high rate data-oriented downlink schemes of the next-generation of cellular systems (e.g., LTE-Advanced). Scheduling selects groups of users according to their channels vector directions and SINR levels. However, when scheduling is applied independently in each cell, the inter-cell interference (ICI) power at each user receiver is not known in advance since it changes at each new scheduling slot depending on the scheduling decisions of all interfering base stations. In order to cope with this uncertainty, we consider the joint operation of scheduling, MU-MIMO beamforming and Automatic Repeat reQuest (ARQ). We develop a game-theoretic framework for this problem and build on stochastic optimization techniques in order to find optimal scheduling and ARQ schemes. Particularizing our framework to the case of "outage service rates", we obtain a scheme based on adaptive variable-rate coding at the physical layer, combined with ARQ at the Logical Link Control (ARQ-LLC). Then, we present a novel scheme based on incremental redundancy Hybrid ARQ (HARQ) that is able to achieve a throughput performance arbitrarily close to the "genie-aided service rates", with no need for a genie that provides non-causally the ICI power levels. The novel HARQ scheme is both easier to implement and superior in performance with respect to the conventional combination of adaptive variable-rate coding and ARQ-LLC.Comment: Submitted to IEEE Transactions on Communications, v2: small correction

    Using Channel Output Feedback to Increase Throughput in Hybrid-ARQ

    Full text link
    Hybrid-ARQ protocols have become common in many packet transmission systems due to their incorporation in various standards. Hybrid-ARQ combines the normal automatic repeat request (ARQ) method with error correction codes to increase reliability and throughput. In this paper, we look at improving upon this performance using feedback information from the receiver, in particular, using a powerful forward error correction (FEC) code in conjunction with a proposed linear feedback code for the Rayleigh block fading channels. The new hybrid-ARQ scheme is initially developed for full received packet feedback in a point-to-point link. It is then extended to various different multiple-antenna scenarios (MISO/MIMO) with varying amounts of packet feedback information. Simulations illustrate gains in throughput.Comment: 30 page

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Diversity-Multiplexing Tradeoffs in MIMO Relay Channels

    Full text link
    A multi-hop relay channel with multiple antenna terminals in a quasi-static slow fading environment is considered. For both full-duplex and half-duplex relays the fundamental diversity-multiplexing tradeoff (DMT) is analyzed. It is shown that, while decode-and-forward (DF) relaying achieves the optimal DMT in the full-duplex relay scenario, the dynamic decode-and-forward (DDF) protocol is needed to achieve the optimal DMT if the relay is constrained to half-duplex operation. For the latter case, static protocols are considered as well, and the corresponding achievable DMT performance is characterized.Comment: To appear at IEEE Global Communications Conf. (Globecom), New Orleans, LA, Nov. 200
    • …
    corecore