1,103 research outputs found

    A novel classification algorithm based on incremental semi-supervised support vector machine

    Get PDF
    For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM) is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a “soft-start” approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment

    Computational intelligence techniques for maritime and coastal remote sensing

    Get PDF
    The aim of this thesis is to investigate the potential of computational intelligence techniques for some applications in the analysis of remotely sensed multi-spectral images. In particular, two problems are addressed. The first one is the classification of oil spills at sea, while the second one is the estimation of sea bottom depth. In both cases, the exploitation of optical satellite data allows to develop operational tools for easily accessing and monitoring large marine areas, in an efficient and cost effective way. Regarding the oil spill problem, today public opinion is certainly aware of the huge impact that oil tanker accidents and oil rig leaks have on marine and coastal environment. However, it is less known that most of the oil released in our seas cannot be ascribed to accidental spills, but rather to illegal ballast waters discharge, and to pollutant dumping at sea, during routine operations of oil tankers. For this reason, any effort for improving oil spill detection systems is of great importance. So far, Synthetic Aperture Radar (SAR) data have been preferred to multi-spectral data for oil spill detection applications, because of their all-weather and all-day capabilities, while optical images necessitate of clear sky conditions and day-light. On the other hand, many features make an optical approach desirable, such as lower cost and higher revisit time. Moreover, unlike SAR data, optical data are not affected by sea state, and are able to reduce false alarm rate, since they do not suffer from the main false alarm source in SAR data, that is represented by the presence of calm sea regions. In this thesis the problem of oil spill classification is tackled by applying different machine learning techniques to a significant dataset of regions of interest, collected in multi-spectral satellite images, acquired by MODIS sensor. These regions are then classified in one of two possible classes, that are oil spills and look-alikes, where look-alikes include any phenomena other than oil spills (e.g. algal blooms...). Results show that efficient and reliable oil spill classification systems based on optical data are feasible, and could offer a valuable support to the existing satellite-based monitoring systems. The estimation of sea bottom depth from high resolution multi-spectral satellite images is the second major topic of this thesis. The motivations for dealing with this problem arise from the necessity of limiting expensive and time consuming measurement campaigns. Since satellite data allow to quickly analyse large areas, a solution for this issue is to employ intelligent techniques, which, by exploiting a small set of depth measurements, are able to extend bathymetry estimate to a much larger area, covered by a multi-spectral satellite image. Such techniques, once that the training phase has been completed, allow to achieve very accurate results, and, thanks to their generalization capabilities, provide reliable bathymetric maps which cover wide areas. A crucial element is represented by the training dataset, which is built by coupling a number of depth measurements, located in a limited part of the image, with corresponding radiances, acquired by the satellite sensor. A successful estimate essentially depends on how the training dataset resembles the rest of the scene. On the other hand, the result is not affected by model uncertainties and systematic errors, as results from model-based analytic approaches are. In this thesis a neuro-fuzzy technique is applied to two case studies, more precisely, two high resolution multi-spectral images related to the same area, but acquired in different years and in different meteorological conditions. Different situations of in-situ depths availability are considered in the study, and the effect of limited in-situ data availability on performance is evaluated. The effect of both meteorological conditions and training set size reduction on the overall performance is also taken into account. Results outperform previous studies on bathymetry estimation techniques, and allow to give indications on the optimal paths which can be adopted when planning data collection at sea

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamientoPostprint (published version

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art

    Online error correcting output codes

    Get PDF
    a b s t r a c t This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings oneversus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier

    Recent Advances in Fully Dynamic Graph Algorithms

    Full text link
    In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms

    Massive Scale Streaming Graphs: Evolving Network Analysis and Mining

    Get PDF

    AnyNovel: detection of novel concepts in evolving data streams: An application for activity recognition

    Get PDF
    A data stream is a flow of unbounded data that arrives continuously at high speed. In a dynamic streaming environment, the data changes over the time while stream evolves. The evolving nature of data causes essentially the appearance of new concepts. This novel concept could be abnormal such as fraud, network intrusion, or a sudden fall. It could also be a new normal concept that the system has not seen/trained on before. In this paper we propose, develop, and evaluate a technique for concept evolution in evolving data streams. The novel approach continuously monitors the movement of the streaming data to detect any emerging changes. The technique is capable of detecting the emergence of any novel concepts whether they are normal or abnormal. It also applies a continuous and active learning for assimilating the detected concepts in real time. We evaluate our approach on activity recognition domain as an application of evolving data streams. The study of the novel technique on benchmarked datasets showed its efficiency in detecting new concepts and continuous adaptation with low computational cost
    corecore