2,671 research outputs found

    Deletion in Abstract Voronoi Diagrams in Expected Linear Time

    Get PDF
    Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem for a long time. Similarly for various concrete Voronoi diagrams of generalized sites, other than points. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion. We introduce the concept of a Voronoi-like diagram, a relaxed version of a Voronoi construct that has a structure similar to an abstract Voronoi diagram, without however being one. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under an insertion operation, thus, enabling its use in incremental constructions

    Sublinear Explicit Incremental Planar Voronoi Diagrams

    Full text link
    A data structure is presented that explicitly maintains the graph of a Voronoi diagram of NN point sites in the plane or the dual graph of a convex hull of points in three dimensions while allowing insertions of new sites/points. Our structure supports insertions in O~(N3/4)\tilde O (N^{3/4}) expected amortized time, where O~\tilde O suppresses polylogarithmic terms. This is the first result to achieve sublinear time insertions; previously it was shown by Allen et al. that Θ(N)\Theta(\sqrt{N}) amortized combinatorial changes per insertion could occur in the Voronoi diagram but a sublinear-time algorithm was only presented for the special case of points in convex position.Comment: 14 pages, 10 figures. Presented ant JCDCGGG 201

    Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams

    Full text link
    We consider preprocessing a set SS of nn points in convex position in the plane into a data structure supporting queries of the following form: given a point qq and a directed line \ell in the plane, report the point of SS that is farthest from (or, alternatively, nearest to) the point qq among all points to the left of line \ell. We present two data structures for this problem. The first data structure uses O(n1+ε)O(n^{1+\varepsilon}) space and preprocessing time, and answers queries in O(21/εlogn)O(2^{1/\varepsilon} \log n) time, for any 0<ε<10 < \varepsilon < 1. The second data structure uses O(nlog3n)O(n \log^3 n) space and polynomial preprocessing time, and answers queries in O(logn)O(\log n) time. These are the first solutions to the problem with O(logn)O(\log n) query time and o(n2)o(n^2) space. The second data structure uses a new representation of nearest- and farthest-point Voronoi diagrams of points in convex position. This representation supports the insertion of new points in clockwise order using only O(logn)O(\log n) amortized pointer changes, in addition to O(logn)O(\log n)-time point-location queries, even though every such update may make Θ(n)\Theta(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n)o(n) amortized pointer changes per operation while keeping O(logn)O(\log n)-time point-location queries.Comment: 17 pages, 6 figures. Various small improvements. To appear in Algorithmic

    A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

    Full text link
    In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point tt and a cluster PP is measured as the maximum distance between tt and any point in PP, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider %El."non-crossing" \emph{non-crossing} clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, nn, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)O(n\log^2{n}) time and expected O(n)O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.Comment: arXiv admin note: substantial text overlap with arXiv:1306.583

    On the Complexity of Randomly Weighted Voronoi Diagrams

    Full text link
    In this paper, we provide an O(npolylogn)O(n \mathrm{polylog} n) bound on the expected complexity of the randomly weighted Voronoi diagram of a set of nn sites in the plane, where the sites can be either points, interior-disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not their location. This compares favorably with the worst case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal etal [AHKS13] of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems

    From Proximity to Utility: A Voronoi Partition of Pareto Optima

    Get PDF
    We present an extension of Voronoi diagrams where when considering which site a client is going to use, in addition to the site distances, other site attributes are also considered (for example, prices or weights). A cell in this diagram is then the locus of all clients that consider the same set of sites to be relevant. In particular, the precise site a client might use from this candidate set depends on parameters that might change between usages, and the candidate set lists all of the relevant sites. The resulting diagram is significantly more expressive than Voronoi diagrams, but naturally has the drawback that its complexity, even in the plane, might be quite high. Nevertheless, we show that if the attributes of the sites are drawn from the same distribution (note that the locations are fixed), then the expected complexity of the candidate diagram is near linear. To this end, we derive several new technical results, which are of independent interest. In particular, we provide a high-probability, asymptotically optimal bound on the number of Pareto optima points in a point set uniformly sampled from the dd-dimensional hypercube. To do so we revisit the classical backward analysis technique, both simplifying and improving relevant results in order to achieve the high-probability bounds

    Kinetic and Dynamic Delaunay tetrahedralizations in three dimensions

    Get PDF
    We describe the implementation of algorithms to construct and maintain three-dimensional dynamic Delaunay triangulations with kinetic vertices using a three-simplex data structure. The code is capable of constructing the geometric dual, the Voronoi or Dirichlet tessellation. Initially, a given list of points is triangulated. Time evolution of the triangulation is not only governed by kinetic vertices but also by a changing number of vertices. We use three-dimensional simplex flip algorithms, a stochastic visibility walk algorithm for point location and in addition, we propose a new simple method of deleting vertices from an existing three-dimensional Delaunay triangulation while maintaining the Delaunay property. The dual Dirichlet tessellation can be used to solve differential equations on an irregular grid, to define partitions in cell tissue simulations, for collision detection etc.Comment: 29 pg (preprint), 12 figures, 1 table Title changed (mainly nomenclature), referee suggestions included, typos corrected, bibliography update
    corecore