40,483 research outputs found

    A syntactic language model based on incremental CCG parsing

    Get PDF
    Syntactically-enriched language models (parsers) constitute a promising component in applications such as machine translation and speech-recognition. To maintain a useful level of accuracy, existing parsers are non-incremental and must span a combinatorially growing space of possible structures as every input word is processed. This prohibits their incorporation into standard linear-time decoders. In this paper, we present an incremental, linear-time dependency parser based on Combinatory Categorial Grammar (CCG) and classification techniques. We devise a deterministic transform of CCGbank canonical derivations into incremental ones, and train our parser on this data. We discover that a cascaded, incremental version provides an appealing balance between efficiency and accuracy

    All Politics is Local: The Renminbi's Prospects as a Future Global Currency

    Get PDF
    . In this article we describe methods for improving the RWTH German speech recognizer used within the VERBMOBIL project. In particular, we present acceleration methods for the search based on both within-word and across-word phoneme models. We also study incremental methods to reduce the response time of the online speech recognizer. Finally, we present experimental off-line results for the three VERBMOBIL scenarios. We report on word error rates and real-time factors for both speaker independent and speaker dependent recognition. 1 Introduction The goal of the VERBMOBIL project is to develop a speech-to-speech translation system that performs close to real-time. In this system, speech recognition is followed by subsequent VERBMOBIL modules (like syntactic analysis and translation) which depend on the recognition result. Therefore, in this application it is particularly important to keep the recognition time as short as possible. There are VERBMOBIL modules which are capable to work ..

    Low-Latency Sequence-to-Sequence Speech Recognition and Translation by Partial Hypothesis Selection

    Full text link
    Encoder-decoder models provide a generic architecture for sequence-to-sequence tasks such as speech recognition and translation. While offline systems are often evaluated on quality metrics like word error rates (WER) and BLEU, latency is also a crucial factor in many practical use-cases. We propose three latency reduction techniques for chunk-based incremental inference and evaluate their efficiency in terms of accuracy-latency trade-off. On the 300-hour How2 dataset, we reduce latency by 83% to 0.8 second by sacrificing 1% WER (6% rel.) compared to offline transcription. Although our experiments use the Transformer, the hypothesis selection strategies are applicable to other encoder-decoder models. To avoid expensive re-computation, we use a unidirectionally-attending encoder. After an adaptation procedure to partial sequences, the unidirectional model performs on-par with the original model. We further show that our approach is also applicable to low-latency speech translation. On How2 English-Portuguese speech translation, we reduce latency to 0.7 second (-84% rel.) while incurring a loss of 2.4 BLEU points (5% rel.) compared to the offline system

    KIT's Multilingual Speech Translation System for IWSLT 2023

    Full text link
    Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which focuses on the translation of scientific conference talks. The test condition features accented input speech and terminology-dense contents. The tasks requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.Comment: IWSLT 202

    Incremental Blockwise Beam Search for Simultaneous Speech Translation with Controllable Quality-Latency Tradeoff

    Full text link
    Blockwise self-attentional encoder models have recently emerged as one promising end-to-end approach to simultaneous speech translation. These models employ a blockwise beam search with hypothesis reliability scoring to determine when to wait for more input speech before translating further. However, this method maintains multiple hypotheses until the entire speech input is consumed -- this scheme cannot directly show a single \textit{incremental} translation to users. Further, this method lacks mechanisms for \textit{controlling} the quality vs. latency tradeoff. We propose a modified incremental blockwise beam search incorporating local agreement or hold-nn policies for quality-latency control. We apply our framework to models trained for online or offline translation and demonstrate that both types can be effectively used in online mode. Experimental results on MuST-C show 0.6-3.6 BLEU improvement without changing latency or 0.8-1.4 s latency improvement without changing quality.Comment: Accepted at INTERSPEECH 202

    Visualization: the missing factor in Simultaneous Speech Translation

    Full text link
    Simultaneous speech translation (SimulST) is the task in which output generation has to be performed on partial, incremental speech input. In recent years, SimulST has become popular due to the spread of cross-lingual application scenarios, like international live conferences and streaming lectures, in which on-the-fly speech translation can facilitate users' access to audio-visual content. In this paper, we analyze the characteristics of the SimulST systems developed so far, discussing their strengths and weaknesses. We then concentrate on the evaluation framework required to properly assess systems' effectiveness. To this end, we raise the need for a broader performance analysis, also including the user experience standpoint. SimulST systems, indeed, should be evaluated not only in terms of quality/latency measures, but also via task-oriented metrics accounting, for instance, for the visualization strategy adopted. In light of this, we highlight which are the goals achieved by the community and what is still missing.Comment: Accepted at CLIC-it 202

    Learning Fault-tolerant Speech Parsing with SCREEN

    Get PDF
    This paper describes a new approach and a system SCREEN for fault-tolerant speech parsing. SCREEEN stands for Symbolic Connectionist Robust EnterprisE for Natural language. Speech parsing describes the syntactic and semantic analysis of spontaneous spoken language. The general approach is based on incremental immediate flat analysis, learning of syntactic and semantic speech parsing, parallel integration of current hypotheses, and the consideration of various forms of speech related errors. The goal for this approach is to explore the parallel interactions between various knowledge sources for learning incremental fault-tolerant speech parsing. This approach is examined in a system SCREEN using various hybrid connectionist techniques. Hybrid connectionist techniques are examined because of their promising properties of inherent fault tolerance, learning, gradedness and parallel constraint integration. The input for SCREEN is hypotheses about recognized words of a spoken utterance potentially analyzed by a speech system, the output is hypotheses about the flat syntactic and semantic analysis of the utterance. In this paper we focus on the general approach, the overall architecture, and examples for learning flat syntactic speech parsing. Different from most other speech language architectures SCREEN emphasizes an interactive rather than an autonomous position, learning rather than encoding, flat analysis rather than in-depth analysis, and fault-tolerant processing of phonetic, syntactic and semantic knowledge.Comment: 6 pages, postscript, compressed, uuencoded to appear in Proceedings of AAAI 9
    • 

    corecore