75 research outputs found

    Rough set and rule-based multicriteria decision aiding

    Get PDF
    The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Multiple Criteria Ranking and Choice with All Compatible Minimal Cover Sets of Decision Rules

    Get PDF
    We introduce a new multiple criteria ranking/choice method that applies Dominance-based Rough Set Approach (DRSA) and represents the Decision Maker's (DM's) preferences with decision rules. The DM provides a set of pairwise comparisons indicating whether an outranking (weak preference) relation should hold for some pairs of reference alternatives. This preference information is structured using the lower and upper approximations of outranking (S) and non-outranking (S c ) relations. Then, all minimal-cover (MC) sets of decision rules being compatible with this preference information are induced. Each of these sets is supported by some positive examples (pairs of reference alternatives from the lower approximation of a preference relation) and it does not cover any negative example (pair of alternatives from the upper approximation of an opposite preference relation). The recommendations obtained by all MC sets of rules are analyzed to describe pairwise outranking and non-outranking relations, using probabilistic indices (estimates of probabilities that one alternative outranks or does not outrank the other). Furthermore, given the preference relations obtained in result of application of each MC set of rules on a considered set of alternatives, we exploit them using some scoring procedures. From this, we derive the distribution of ranks attained by the alternatives. We also extend the basic approach in several ways. The practical usefulness of the method is demonstrated on a problem of ranking Polish cities according to their innovativeness

    Classification in the Presence of Ordered Classes and Weighted Evaluative Attributes

    Get PDF
    We are interested in an important family of problems in the interface of the Multi-Attribute Decision-Making and Data Mining fields. This is a special case of the general classification problem, in which records describing entities of interest have been expressed in terms of a number of evaluative attributes. These attributes are associated with weights of importance, and both the data and the classes are ordinal. Our goal is to use historical records and the corresponding decisions to best estimate the class values of new data points in a way consistent with prior classification decisions, without knowledge of the weights of the evaluative attributes. We study three variants of this problem. The first is when all decisions are consistent with a single set of attribute weights (called the separable case.) The second is when all decisions are consistent, but involve two sets of attribute weights corresponding to two decision makers, who determine the classification of the data together (called the two-plane separable case.) The third is when there is some inconsistency in the set of weights that must be accounted for (called the non-separable case.) Furthermore, we examine 2-class problems and also multiple class problems. We propose the Ordinal Boundary method, which has a significant advantage over traditional approaches in multi-class problems. Linear programming (optimization) based approaches provide a promising avenue for dealing with these problems effectively. We present computational results that support this argument

    Multistage feature selection methods for data classification

    Get PDF
    In data analysis process, a good decision can be made with the assistance of several sub-processes and methods. The most common processes are feature selection and classification processes. Various methods and processes have been proposed to solve many issues such as low classification accuracy, and long processing time faced by the decision-makers. The analysis process becomes more complicated especially when dealing with complex datasets that consist of large and problematic datasets. One of the solutions that can be used is by employing an effective feature selection method to reduce the data processing time, decrease the used memory space, and increase the accuracy of decisions. However, not all the existing methods are capable of dealing with these issues. The aim of this research was to assist the classifier in giving a better performance when dealing with problematic datasets by generating optimised attribute set. The proposed method comprised two stages of feature selection processes, that employed correlation-based feature selection method using a best first search algorithm (CFS-BFS) and as well as a soft set and rough set parameter selection method (SSRS). CFS-BFS is used to eliminate uncorrelated attributes in a dataset meanwhile SSRS was utilized to manage any problematic values such as uncertainty in a dataset. Several bench-marking feature selection methods such as classifier subset evaluation (CSE) and principle component analysis (PCA) and different classifiers such as support vector machine (SVM) and neural network (NN) were used to validate the obtained results. ANOVA and T-test were also conducted to verify the obtained results. The obtained averages for two experimentalworks have proven that the proposed method equally matched the performance of other benchmarking methods in terms of assisting the classifier in achieving high classification performance for complex datasets. The obtained average for another experimental work has shown that the proposed work has outperformed the other benchmarking methods. In conclusion, the proposed method is significant to be used as an alternative feature selection method and able to assist the classifiers in achieving better accuracy in the classification process especially when dealing with problematic datasets

    Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems

    Get PDF
    The reduction of greenhouse gas emissions is a major governmental goal worldwide. The main target, hopefully by 2050, is to move away from fossil fuels in the electricity sector and then switch to clean power to fuel transportation, buildings and industry. This book discusses important issues in the expanding field of wind farm modeling and simulation as well as the optimization of hybrid and micro-grid systems. Section I deals with modeling and simulation of wind farms for efficient, reliable and cost-effective optimal solutions. Section II tackles the optimization of hybrid wind/PV and renewable energy-based smart micro-grid systems

    Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems

    Get PDF
    The reduction of greenhouse gas emissions is a major governmental goal worldwide. The main target, hopefully by 2050, is to move away from fossil fuels in the electricity sector and then switch to clean power to fuel transportation, buildings and industry. This book discusses important issues in the expanding field of wind farm modeling and simulation as well as the optimization of hybrid and micro-grid systems. Section I deals with modeling and simulation of wind farms for efficient, reliable and cost-effective optimal solutions. Section II tackles the optimization of hybrid wind/PV and renewable energy-based smart micro-grid systems

    Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems

    Get PDF
    The reduction of greenhouse gas emissions is a major governmental goal worldwide. The main target, hopefully by 2050, is to move away from fossil fuels in the electricity sector and then switch to clean power to fuel transportation, buildings and industry. This book discusses important issues in the expanding field of wind farm modeling and simulation as well as the optimization of hybrid and micro-grid systems. Section I deals with modeling and simulation of wind farms for efficient, reliable and cost-effective optimal solutions. Section II tackles the optimization of hybrid wind/PV and renewable energy-based smart micro-grid systems

    Multi-Criteria Decision Analysis (MCDA) as the basis for the development, implementation and evaluation of interactive patient decision aids

    Get PDF
    BACKGROUND: In the context of the progressive movement towards patientcentred care, patient-specific decision support is an important focus of interest. Many diagnostic and treatment patient decision aids (PDAs) are now available to help patients make informed choice decisions. An increasing number of these are software-based, with some available online. Multi-Criteria Decision Analysis (MCDA) is a potentially useful technique on which to base a software-assisted PDA, especially when the decision is complex - as is the case in choosing the best treatment for non-small cell lung cancer – but it has so far been relatively little exploited in this area. The use of any from a number of existing MCDA-based software applications in the development and delivery of a MCDA-based interactive PDA can be an effective way of achieving “best-practice” or normative standards of decision making, such as 1) a well-constructed set of decision criteria or 2) logically consistent patient preferences. However, it also involves the use of resources such as the time and cognitive effort involved in decision-making. The comparative evaluation of alternative MCDA-based software applications in developing and delivering a PDA therefore involves trade-offs between decision effectiveness and decision resource criteria moving from the normative to the prescriptive. MCDA is an ideal tool for this meta-evaluation task as well as for the adoption decision itself. AIM: To analyse, as proof of concept, the use of MCDA for the development, implementation and evaluation of interactive PDAs in routine clinical practice. OBJECTIVES: 1. To assess the use with clinicians in the Spanish NHS of two alternative MCDA software applications which implement dissimilar MCDA techniques in the development of a PDA in routine clinical practice; 2. To assess the use with clinicians in the Spanish NHS of the same two alternative MCDA software applications in the implementation of a PDA in an environment replicating actual clinical consultations; 3. To build a meta-multi-criteria decision model based on the Decision Resources Decision Effectiveness Analysis (DRDEA) framework and assess the use of this model by clinicians in the Spanish NHS to make the choice between the two MCDA applications as the basis for a PDA. METHODS: 1) Two dissimilar MCDA software applications served as a basis for the development of a lung cancer clinical management PDA in close collaboration with two different groups of three clinicians from two different Spanish NHS hospitals (H1 and H2): 1) Expert Choice, which implements the Analytic Hierarchy Process (AHP) MCDA approach; 2) Annalisa in Elicia (ALEL), which implements the Simple Attribute Weighting (SAW) MCDA approach. The process of codevelopment of the PDA in hospitals H1 and H2 was documented; 2) Expert Choice was used to implement (i.e. deliver) the lung cancer clinical management PDA in three hypothetical consultations in hospital H1. In each consultation, one of the three clinicians involved in the development of the tool, with support by this researcher, guided a proxy patient (a non-clinical member of hospital staff) through the PDA. The same process was repeated with the MCDA software ALEL in hospital H2. The process of delivery of the PDA in hospitals H1 and H2 was documented; 3) This researcher built a meta-multi-criteria decision model based on the DRDEA framework to help clinicians choose between different MCDA software applications as the basis of a PDA. The MCDA approach used for this meta-model was Multi- Attribute Value Theory (MAVT). The model was implemented, using the software HiView 3, with three clinicians from hospital H3 for the choice between Expert Choice and ALEL as the basis of a lung cancer clinical management PDA. RESULTS: The thesis makes a three-fold contribution to research in patient-centred decision support. First, it presents two new MCDA software-based approaches to clinical decision support, based on joint work with clinicians in the Spanish NHS, for developing an interactive PDA for the clinical management of non-small cell lung cancer. Second, it describes the use of these decision support tools in the delivery of 5 an interactive PDA for the clinical management of non-small cell lung cancer in a hospital environment via simulated consultations between actual clinicians, with support from this researcher, and proxy lung cancer patients. Third, it presents and applies a new MCDA-based methodology for evaluating the use of alternative MCDA software applications in the development and delivery of interactive PDAs

    Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences

    Get PDF
    Mathematical fuzzy logic (MFL) specifically targets many-valued logic and has significantly contributed to the logical foundations of fuzzy set theory (FST). It explores the computational and philosophical rationale behind the uncertainty due to imprecision in the backdrop of traditional mathematical logic. Since uncertainty is present in almost every real-world application, it is essential to develop novel approaches and tools for efficient processing. This book is the collection of the publications in the Special Issue “Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences”, which aims to cover theoretical and practical aspects of MFL and FST. Specifically, this book addresses several problems, such as:- Industrial optimization problems- Multi-criteria decision-making- Financial forecasting problems- Image processing- Educational data mining- Explainable artificial intelligence, etc
    • …
    corecore