5 research outputs found

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    A flexible metaheuristic framework for solving rich vehicle routing problems

    Get PDF
    Route planning is one of the most studied research topics in the operations research area. While the standard vehicle routing problem (VRP) is the classical problem formulation, additional requirements arising from practical scenarios such as time windows or vehicle compartments are covered in a wide range of so-called rich VRPs. Many solution algorithms for various VRP variants have been developed over time as well, especially within the class of so-called metaheuristics. In practice, routing software must be tailored to the business rules and planning problems of a specific company to provide valuable decision support. This also concerns the embedded solution methods of such decision support systems. Yet, publications dealing with flexibility and customization of VRP heuristics are rare. To fill this gap this thesis describes the design of a flexible framework to facilitate and accelerate the development of custom metaheuristics for the solution of a broad range of rich VRPs. The first part of the thesis provides background information to the reader on the field of vehicle routing problems and on metaheuristic solution methods - the most common and widely-used solution methods to solve VRPs. Specifically, emphasis is put on methods based on local search (for intensification of the search) and large neighborhood search (for diversification of the search), which are combined to hybrid methods and which are the foundation of the proposed framework. Then, the main part elaborates on the concepts and the design of the metaheuristic VRP framework. The framework fulfills requirements of flexibility, simplicity, accuracy, and speed, enforcing the structuring and standardization of the development process and enabling the reuse of code. Essentially, it provides a library of well-known and accepted heuristics for the standard VRP together with a set of mechanisms to adapt these heuristics to specific VRPs. Heuristics and adaptation mechanisms such as templates for user-definable checking functions are explained on a pseudocode level first, and the most relevant classes of a reference implementation using the Microsoft .NET framework are presented afterwards. Finally, the third part of the thesis demonstrates the use of the framework for developing problem-specific solution methods by exemplifying specific customizations for five rich VRPs with diverse characteristics, namely the VRP with time windows, the VRP with compartments, the split delivery VRP, the periodic VRP, and the truck and trailer routing problem. These adaptations refer to data structures and neighborhood search methods and can serve as a source of inspiration to the reader when designing algorithms for new, so far unstudied VRPs. Computational results are presented to show the effectiveness and efficiency of the proposed framework and methods, which are competitive with current state-of-the-art solvers of the literature. Special attention is given to the overall robustness of heuristics, which is an important aspect for practical application

    Heuristics for dynamic vehicle routing problems with pickups and deliveries and time windows

    Get PDF
    The work presented in this thesis concerns the problem of dynamic vehicle routing. The motivation for this is the increasing demands on transportation services to deliver fast, efficient and reliable service. Systems are now needed for dispatching transportation requests that arrive dynamically throughout the scheduling horizon. Therefore the focus of this research is the dynamic pickup and delivery problem with time windows, where requests are not completely known in advance but become available during the scheduling horizon. All requests have to be satisfied by a given fleet of vehicles and each request has a pickup and delivery location, along with a time window at which services can take place. To solve the DPDPTW, our algorithm is embedded in a rolling horizon framework, thus allowing the problem to be viewed as a series of static sub-problems. This research begins by considering the static variant of the problem. Both heuristic and metaheuristic methods are applied and an analysis is performed across a range of well-known instances. Results competitive with the state of the art are obtained. For the dynamic problem, investigations are performed to identify how requests arriving dynamically should be incorporated into the solution. Varying degrees of urgency and proportions of dynamic requests have been examined. Further investigations look at improving the solutions over time and identifying appropriate improvement heuristics. Again competitive results are achieved across a range of instances from the literature. This continually increasing area of research covers many real-life problems such as a health courier service. Here, the problem consists of the pickup and delivery of mail, specimens and equipment between hospitals, GP surgeries and health centres. Final research applies our findings to a real-life example of this problem, both for static schedules and a real-time 24/7 service
    corecore