196 research outputs found

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor

    Capacity Bounds for a Class of Interference Relay Channels

    Full text link
    The capacity of a class of Interference Relay Channels (IRC) -the Injective Semideterministic IRC where the relay can only observe one of the sources- is investigated. We first derive a novel outer bound and two inner bounds which are based on a careful use of each of the available cooperative strategies together with the adequate interference decoding technique. The outer bound extends Telatar and Tse's work while the inner bounds contain several known results in the literature as special cases. Our main result is the characterization of the capacity region of the Gaussian class of IRCs studied within a fixed number of bits per dimension -constant gap. The proof relies on the use of the different cooperative strategies in specific SNR regimes due to the complexity of the schemes. As a matter of fact, this issue reveals the complex nature of the Gaussian IRC where the combination of a single coding scheme for the Gaussian relay and interference channel may not lead to a good coding scheme for this problem, even when the focus is only on capacity to within a constant gap over all possible fading statistics.Comment: 23 pages, 6 figures. Submitted to IEEE Transactions on Information Theory (revised version

    Novel transmission schemes for application in two-way cooperative relay wireless communication networks

    Get PDF
    Recently, cooperative relay networks have emerged as an attractive communications technique that can generate a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. To achieve cooperative diversity single-antenna terminals in a wireless relay network typically share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. However, there remain technical challenges to maximize the benefit of cooperative communications, e.g. data rate, asynchronous transmission, interference and outage. Therefore, the focus of this thesis is to exploit cooperative relay networks within two-way transmission schemes. Such schemes have the potential to double the data rate as compared to one-way transmission schemes. Firstly, a new approach to two-way cooperative communications via extended distributed orthogonal space-time block coding (E-DOSTBC) based on phase rotation feedback is proposed with four relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain. Then, distributed orthogonal space-time block coding (DOSTBC) is applied within an asynchronous two-way cooperative wireless relay network using two relay nodes. A parallel interference cancelation (PIC) detection scheme with low structural and computational complexity is applied at the terminal nodes in order to overcome the effect of imperfect synchronization among the cooperative relay nodes. Next, a DOSTBC scheme based on cooperative orthogonal frequency division multiplexing (OFDM) type transmission is proposed for flat fading channels which can overcome imperfect synchronization in the network. As such, this technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, a closed-loop EDOSTBC approach using through a three-time slot framework is proposed. A full interference cancelation scheme with OFDM and cyclic prefix type transmission is used in a two-hop cooperative four relay network with asynchronism in the both hops to achieve full data rate and completely cancel the timing error. The topic of outage probability analysis in the context of multi-relay selection for one-way cooperative amplify and forward networks is then considered. Local measurements of the instantaneous channel conditions are used to select the best single and best two relays from a number of available relays. Asymptotical conventional polices are provided to select the best single and two relays from a number of available relays. Finally, the outage probability of a two-way amplify and forward relay network with best and Mth relay selection is analyzed. The relay selection is performed either on the basis of a max-min strategy or one based on maximizing exact end-to-end signal-to-noise ratio. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of new algorithms and methods

    Performance evaluation of decode and forward cooperative diversity systems over nakagami-m fading channels with non-identical interferers

    Get PDF
    The deficiencies of regular cooperative relaying schemes were the main reason behind the development of Incremental Relaying (IR). Fixed relaying is one of the regular cooperative relaying schemes and it relies on using the relay node to help in transmitting the signal of the source towards the destination despite the channel’s condition. However, adaptive relaying methods allocate the channel resources efficiently; thus, such methods have drawn the attention of researchers in recent years. In this study, we analyze a two-hop Decode-and-Forward (DF) IR system’s performance via Nakagami-m fading channels with the existence of the several L distinguishable interferers placed close to the destination which diminishes the overall performance of the system due to the co-channel interference. Tight formulas for the Bit Error Rate (BER) and the Outage Probability (OP) are drawn. The assumptions are consolidated by numerical calculations

    Decode-and-Forward Relaying via Standard AWGN Coding and Decoding

    Get PDF
    A framework is developed for decode-and-forward based relaying using standard coding and decoding that are good for the single-input single-output (SISO) additive white Gaussian noise channel. The framework is applicable to various scenarios and demonstrated for several important cases. Each of these scenarios is transformed into an equivalent Gaussian multiple-input multiple-output (MIMO) common-message broadcast problem, which proves useful even when all links are SISO ones. Over the effective MIMO broadcast channel, a recently developed Gaussian MIMO common-message broadcast scheme is applied. This scheme transforms the MIMO links into a set of parallel SISO channels with no loss of mutual information, using linear pre- and post-processing combined with successive decoding. Over these resulting SISO channels, “off-the-shelf” scalar codes may be used

    Cooperative Detection and Network Coding in Wireless Networks

    Get PDF
    In cooperative communication systems, multiple terminals in wireless networks share their antennas and resources for information exchange and processing. Recently, cooperative communications have been shown to achieve significant performance improvements in terms of transmission reliability, coverage area extension, and network throughput, with respect to existing classical communication systems. This dissertation is focused on two important applications of cooperative communications, namely: (i) cooperative distributed detection in wireless sensor networks, and (ii) many-to-many communications via cooperative space-time network coding. The first application of cooperative communications presented in this dissertation is concerned with the analysis and modeling of the deployment of cooperative relay nodes in wireless sensor networks. Particularly, in dense wireless sensor networks, sensor nodes continuously observe and collect measurements of a physical phenomenon. Such observations can be highly correlated, depending on the spatial separation between the sensor nodes as well as how the physical properties of the phenomenon are evolving over time. This unique characteristic of wireless sensor networks can be effectively exploited with cooperative communications and relays deployment such that the distributed detection performance is significantly improved as well as the energy efficiency. In particular, this dissertation studies the Amplify-and-Forward (AF) relays deployment as a function of the correlation of the observations and analyzes the achievable spatial diversity gains as compared with the classical wireless sensor networks. Moreover, it is demonstrated that the gains of cooperation can be further leveraged to alleviate bandwidth utilization inefficiencies in current sensor networks. Specifically, the deployment of cognitive AF cooperative relays to exploit empty/under-utilized time-slots and the resulting energy savings are studied, quantified and compared. The multiple terminal communication and information exchange form the second application of cooperative communications in this dissertation. Specifically, the novel concept of Space-Time-Network Coding (STNC) that is concerned with formulation of the many-to-many cooperative communications over Decode-and-Forward (DF) nodes is studied and analyzed. Moreover, the exact theoretical analysis as well as upper-bounds on the network symbol error rate performance are derived. In addition, the tradeoff between the number of communicating nodes and the timing synchronization errors is analyzed and provided as a network design guideline. With STNC, it is illustrated that cooperative diversity gains are fully exploited per node and significant performance improvements are achieved. It is concluded that the STNC scheme serves as a potential many-to-many cooperative communications scheme and that its scope goes much further beyond the generic source-relay-destination communications

    Power minimization in wireless systems with superposition coding.

    Get PDF
    Zheng, Xiaoting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (p. 64-69).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Rayleigh Fading --- p.1Chapter 1.2 --- Transmission Schemes --- p.2Chapter 1.2.1 --- Frequency Division Multiple Access(FDMA) --- p.2Chapter 1.2.2 --- Time Division Multiple Access(TDMA) --- p.3Chapter 1.2.3 --- Code Division Multiple Access(CDMA) --- p.5Chapter 1.2.4 --- The Broadcast Channel --- p.5Chapter 1.3 --- Cooperative Transmissions --- p.9Chapter 1.3.1 --- Relaying Protocols --- p.10Chapter 1.4 --- Outline of Thesis --- p.12Chapter 2 --- Background Study --- p.13Chapter 2.1 --- Superposition Coding --- p.13Chapter 2.2 --- Cooperative Transmission --- p.15Chapter 2.2.1 --- Single Source Single Destination --- p.15Chapter 2.2.2 --- Multiple Sources Single Destination --- p.16Chapter 2.2.3 --- Single Source Multiple Destinations --- p.17Chapter 2.2.4 --- Multiple Sources Multiple Destinations --- p.17Chapter 2.3 --- Power Minimization --- p.18Chapter 2.3.1 --- Power Minimization in Code-Multiplexing System --- p.19Chapter 2.3.2 --- Power Minimization in Frequency-multiplexing System --- p.19Chapter 2.3.3 --- Power Minimization in Time-Multiplexing System --- p.20Chapter 3 --- Sum Power Minimization with Superposition Coding --- p.21Chapter 3.1 --- System Model --- p.22Chapter 3.2 --- Superposition Coding Scheme --- p.22Chapter 3.2.1 --- Optimal Superposition Coding Scheme --- p.22Chapter 3.2.2 --- Sub-optimal Superposition Coding Scheme --- p.27Chapter 3.3 --- Performance Evaluation --- p.30Chapter 3.4 --- Assignment Examples for Superposition Coding Scheme --- p.33Chapter 4 --- Source-cooperated Transmission in a Wireless Cluster --- p.42Chapter 4.1 --- System Model --- p.42Chapter 4.2 --- Selection Protocol --- p.44Chapter 4.2.1 --- Protocol Description and Problem Formulation --- p.44Chapter 4.2.2 --- Distributed Selection Algorithm --- p.46Chapter 4.2.3 --- Low Rate Regime --- p.50Chapter 4.3 --- Simulation Results --- p.52Chapter 4.3.1 --- Simulation Configuration --- p.53Chapter 4.3.2 --- Cases with a Smaller Feasible Solution Set --- p.53Chapter 4.3.3 --- Cases with a Larger Feasible Solution Set --- p.56Chapter 5 --- Conclusion and Future Work --- p.61Chapter 5.1 --- Conclusion --- p.61Chapter 5.2 --- Future Work --- p.62Chapter 5.2.1 --- Fairness --- p.62Chapter 5.2.2 --- Distributed Algorithm --- p.63Chapter 5.2.3 --- Game Theory --- p.63Chapter 5.2.4 --- Distributed Information --- p.63Bibliography --- p.6
    • …
    corecore