6,772 research outputs found

    Sketching space

    Get PDF
    In this paper, we present a sketch modelling system which we call Stilton. The program resembles a desktop VRML browser, allowing a user to navigate a three-dimensional model in a perspective projection, or panoramic photographs, which the program maps onto the scene as a `floor' and `walls'. We place an imaginary two-dimensional drawing plane in front of the user, and any geometric information that user sketches onto this plane may be reconstructed to form solid objects through an optimization process. We show how the system can be used to reconstruct geometry from panoramic images, or to add new objects to an existing model. While panoramic imaging can greatly assist with some aspects of site familiarization and qualitative assessment of a site, without the addition of some foreground geometry they offer only limited utility in a design context. Therefore, we suggest that the system may be of use in `just-in-time' CAD recovery of complex environments, such as shop floors, or construction sites, by recovering objects through sketched overlays, where other methods such as automatic line-retrieval may be impossible. The result of using the system in this manner is the `sketching of space' - sketching out a volume around the user - and once the geometry has been recovered, the designer is free to quickly sketch design ideas into the newly constructed context, or analyze the space around them. Although end-user trials have not, as yet, been undertaken we believe that this implementation may afford a user-interface that is both accessible and robust, and that the rapid growth of pen-computing devices will further stimulate activity in this area

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network

    Get PDF
    State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53 which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process
    corecore