3,478 research outputs found

    Reverse Engineering of Short Circuit Analyses

    Get PDF
    The electrical distribution system has evolved with embedded computer systems that can better manage the electrical fault that occurred around the feeders. Such random events can affect the reliability indices of overall systems. Computerized management system for distribution operation has been improving with the advanced sensing technologies. The general research question is here to articulate is the responsiveness for utility crew to pinpoint the exact location of a fault based on the SCADA fault indicators from pole-mounted feeder remote terminal units (FRTUs). This has been a tricky question because it relies on the information received from the sensors that can conclude fault with logic\u27s of over currents. The merit of this work can benefit at large the grid reliability because of time-saving in searching the exact location of a fault. The main contribution of this thesis is to utilize the 3-phase unbalanced power flow method to incrementally search for narrowing the localization of electrical short circuits. This is known as the reversal of the typical short circuit approach where a location of the fault is presumed. The 3 topological configurations of simulation studied in this thesis exhibit the typical radial configuration of a distribution feeder have been researched based on unidirectional and bidirectional power flow simulation. The exact fault location is carried in two steps. Firstly, a bisection search algorithm has been employed. Secondly, an incremental adjustment to match the simulated currents of fault with the measurements is conducted. Finally, the sensitivity analysis of a search can be improved with the proposed algorithm that leads to matching of telemetered and calculated values. The analysis of exact fault location is carried in unidirectional and bidirectional flow of power. Distributed energy resources (DER) such as residential PV at a household level as well the wind energy changes affect the protective relaying within a feeder as well as the reconfigurability of the switching sequences. Furthermost, the bidirectionality of power flow in an unbalanced manner would also be a challenging issue to deal with the power quality in automation. Finally, the simulation results based on unidirectional and bidirectional power flow are extensively discussed along with the future scope

    MPPT Schemes for PV System Under Normal and Partial Shading Condition: a Review

    Full text link
    The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP) and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT) is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016). MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2), 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-9

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    Towards Decentralized Power Systems: Market & Regulatory Frameworks for Ontario

    Get PDF
    This MRP is about the sustainability transition of Ontario’s electricity system. A sustainability transition is understood as a type of purposive socio-technical transition, which is meant to address some normative goal rather than to exploit commercial opportunity. I use the analytical framework presented by the socio-technical transitions literature and multi-level perspective theory to assess the state of Ontario’s grid modernization as evidenced through primarily documentary evidence, most notably the 2017 Long-Term Energy Plan. I conclude that based on this evidence, Ontario is taking a transformation pathway, which is characterized as being driven from within the established regime that modifies its own trajectory in response to landscape pressures and an under-developed niche. This is represented by Ontario’s preferred approach to enable LDCs as the primary developers of DERs through regulatory changes. I then argue that in light of sustainability objectives that I identify in this paper, Ontario’s approach has some shortfalls, and instead I recommend a reconfiguration pathway that requires the strategic modification of 3 key areas to enable a competitive retail DERs market. The three key areas are: (1) adjustments to the grid architecture to address the operational and functional roles of grid actors; (2) establishment of a market structure known as a platform to enable the participation of distributed resources to compete with traditional resources on a level playing, which can be done either at the bulk or distribution levels; and (3) the regulation of a competitive retail DERs market in Ontario

    A Software Design Pattern Based Approach to Auto Dynamic Difficulty in Video Games

    Get PDF
    From the point of view of skill levels, reflex speeds, hand-eye coordination, tolerance for frustration, and motivations, video game players may vary drastically. Auto dynamic difficulty (ADD) in video games refers to the technique of automatically adjusting different aspects of a video game in real time, based on the player’s ability and emergence factors in order to provide the optimal experience to users from such a large demography and increase replay value. In this thesis, we describe a collection of software design patterns for enabling auto dynamic difficulty in video games. We also discuss the benefits of a design pattern based approach in terms of software quality factors and process improvements based on our experience of applying it in three different video games. Additionally, we present a semi-automatic framework to assist in applying our design pattern based approach in video games. Finally, we conducted a preliminary user study where a Post-Degree Diploma student at the University of Western Ontario applied the design pattern based approach to create ADD in two arcade style games

    Industrial Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs

    Implementation of a Cascade Fault Tolerant Control and Fault Diagnosis Design for a Modular Power Supply

    Get PDF
    The main objective of this research work was to develop reliable and intelligent power sources for the future. To achieve this objective, a modular stand-alone solar energy-based direct current (DC) power supply was designed and implemented. The converter topology used is a two-stage interleaved boost converter, which is monitored in closed loop. The diagnosis method is based on analytic redundancy relations (ARRs) deduced from the bond graph (BG) model, which can be used to detect the failures of power switches, sensors, and discrete components such as the output capacitor. The proposed supervision scheme including a passive fault-tolerant cascade proportional integral sliding mode control (PI-SMC) for the two-stage boost converter connected to a solar panel is suitable for real applications. Most model-based diagnosis approaches for power converters typically deal with open circuit and short circuit faults, but the proposed method offers the advantage of detecting the failures of other vital components. Practical experiments on a newly designed and constructed prototype, along with simulations under PSIM software, confirm the efficiency of the control scheme and the successful recovery of a faulty stage by manual isolation. In future work, the automation of this reconfiguration task could be based on the successful simulation results of the diagnosis method.This research was funded by the Tunisian Ministry of Higher Education and Scientific Research
    • …
    corecore