19,519 research outputs found

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Hypothetical answers to continuous queries over data streams

    Full text link
    Continuous queries over data streams may suffer from blocking operations and/or unbound wait, which may delay answers until some relevant input arrives through the data stream. These delays may turn answers, when they arrive, obsolete to users who sometimes have to make decisions with no help whatsoever. Therefore, it can be useful to provide hypothetical answers - "given the current information, it is possible that X will become true at time t" - instead of no information at all. In this paper we present a semantics for queries and corresponding answers that covers such hypothetical answers, together with an online algorithm for updating the set of facts that are consistent with the currently available information

    Towards Ideal Semantics for Analyzing Stream Reasoning

    Full text link
    The rise of smart applications has drawn interest to logical reasoning over data streams. Recently, different query languages and stream processing/reasoning engines were proposed in different communities. However, due to a lack of theoretical foundations, the expressivity and semantics of these diverse approaches are given only informally. Towards clear specifications and means for analytic study, a formal framework is needed to define their semantics in precise terms. To this end, we present a first step towards an ideal semantics that allows for exact descriptions and comparisons of stream reasoning systems.Comment: International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014). Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), pages 17-22, technical report, ISSN 1430-3701, Leipzig University, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-150562 2014,

    Learning from Ontology Streams with Semantic Concept Drift

    Get PDF
    Data stream learning has been largely studied for extracting knowledge structures from continuous and rapid data records. In the semantic Web, data is interpreted in ontologies and its ordered sequence is represented as an ontology stream. Our work exploits the semantics of such streams to tackle the problem of concept drift i.e., unexpected changes in data distribution, causing most of models to be less accurate as time passes. To this end we revisited (i) semantic inference in the context of supervised stream learning, and (ii) models with semantic embeddings. The experiments show accurate prediction with data from Dublin and Beijing

    Streaming the Web: Reasoning over dynamic data.

    Get PDF
    In the last few years a new research area, called stream reasoning, emerged to bridge the gap between reasoning and stream processing. While current reasoning approaches are designed to work on mainly static data, the Web is, on the other hand, extremely dynamic: information is frequently changed and updated, and new data is continuously generated from a huge number of sources, often at high rate. In other words, fresh information is constantly made available in the form of streams of new data and updates. Despite some promising investigations in the area, stream reasoning is still in its infancy, both from the perspective of models and theories development, and from the perspective of systems and tools design and implementation. The aim of this paper is threefold: (i) we identify the requirements coming from different application scenarios, and we isolate the problems they pose; (ii) we survey existing approaches and proposals in the area of stream reasoning, highlighting their strengths and limitations; (iii) we draw a research agenda to guide the future research and development of stream reasoning. In doing so, we also analyze related research fields to extract algorithms, models, techniques, and solutions that could be useful in the area of stream reasoning. © 2014 Elsevier B.V. All rights reserved
    • …
    corecore