8,528 research outputs found

    Incremental Perspective for Feature Selection Based on Fuzzy Rough Sets

    Get PDF

    Computing fuzzy rough approximations in large scale information systems

    Get PDF
    Rough set theory is a popular and powerful machine learning tool. It is especially suitable for dealing with information systems that exhibit inconsistencies, i.e. objects that have the same values for the conditional attributes but a different value for the decision attribute. In line with the emerging granular computing paradigm, rough set theory groups objects together based on the indiscernibility of their attribute values. Fuzzy rough set theory extends rough set theory to data with continuous attributes, and detects degrees of inconsistency in the data. Key to this is turning the indiscernibility relation into a gradual relation, acknowledging that objects can be similar to a certain extent. In very large datasets with millions of objects, computing the gradual indiscernibility relation (or in other words, the soft granules) is very demanding, both in terms of runtime and in terms of memory. It is however required for the computation of the lower and upper approximations of concepts in the fuzzy rough set analysis pipeline. Current non-distributed implementations in R are limited by memory capacity. For example, we found that a state of the art non-distributed implementation in R could not handle 30,000 rows and 10 attributes on a node with 62GB of memory. This is clearly insufficient to scale fuzzy rough set analysis to massive datasets. In this paper we present a parallel and distributed solution based on Message Passing Interface (MPI) to compute fuzzy rough approximations in very large information systems. Our results show that our parallel approach scales with problem size to information systems with millions of objects. To the best of our knowledge, no other parallel and distributed solutions have been proposed so far in the literature for this problem

    Scalable approximate FRNN-OWA classification

    Get PDF
    Fuzzy Rough Nearest Neighbour classification with Ordered Weighted Averaging operators (FRNN-OWA) is an algorithm that classifies unseen instances according to their membership in the fuzzy upper and lower approximations of the decision classes. Previous research has shown that the use of OWA operators increases the robustness of this model. However, calculating membership in an approximation requires a nearest neighbour search. In practice, the query time complexity of exact nearest neighbour search algorithms in more than a handful of dimensions is near-linear, which limits the scalability of FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a modified model that calculates upper and lower approximations of decision classes using the approximate nearest neighbours returned by Hierarchical Navigable Small Worlds (HNSW), a recent approximative nearest neighbour search algorithm with logarithmic query time complexity at constant near-100% accuracy. We demonstrate that approximate FRNN-OWA is sufficiently robust to match the classification accuracy of exact FRNN-OWA while scaling much more efficiently. We test four parameter configurations of HNSW, and evaluate their performance by measuring classification accuracy and construction and query times for samples of various sizes from three large datasets. We find that with two of the parameter configurations, approximate FRNN-OWA achieves near-identical accuracy to exact FRNN-OWA for most sample sizes within query times that are up to several orders of magnitude faster

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space

    Adaptive quick reduct for feature drift detection

    Get PDF
    Data streams are ubiquitous and related to the proliferation of low-cost mobile devices, sensors, wireless networks and the Internet of Things. While it is well known that complex phenomena are not stationary and exhibit a concept drift when observed for a sufficiently long time, relatively few studies have addressed the related problem of feature drift. In this paper, a variation of the QuickReduct algorithm suitable to process data streams is proposed and tested: it builds an evolving reduct that dynamically selects the relevant features in the stream, removing the redundant ones and adding the newly relevant ones as soon as they become such. Tests on five publicly available datasets with an artificially injected drift have confirmed the effectiveness of the proposed method

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented
    • …
    corecore