2,253 research outputs found

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Tools and Algorithms for SoC Communication Traces

    Full text link
    In this paper, we study seven well-known trace analysis techniques both from the hardware and software domain and discuss their performance on communication-centric system-on-chip (SoC) traces. SoC traces are usually huge in size and concurrent in nature, therefore mining SoC traces poses additional challenges. We provide a hands-on discussion of the selected tools/algorithms in terms of the input, output, and analysis methods they employ. Hardware traces also varies in nature when observed in different level, this work can help developers/academicians to pick up the right techniques for their work. We take advantage of a synthetic trace generator to find the interestingness of the mined outcomes for each tool as well as we work with a realistic GEM5 set up to find the performance of these tools on more realistic SoC traces. Comprehensive analysis of the tool's performance and a benchmark trace dataset are also presented

    Process windows

    Get PDF
    We describe a method for formally representing the behaviour of complex processes by process windows. Each window covers a part of the system behaviour, i.e. a part of the underlying transition system, and is easier to understand and analyse than the complete transition system. Process windows can overlap and have shared states and transitions so that the complete system behaviour is the union of window behaviours. We demonstrate the advantage of such representations when dealing with complex system behaviours, and discuss potential applications in circuit design and process mining. As a motivational example we consider the problem of covering transition systems by marked graphs, or more generally choicefree Petri nets. The obtained windows correspond to choice-free behavioural scenarios of the system, wherein one window can take over, or wake up, after another window has become inactive. The corresponding wake-up conditions and wake-up markings can be derived automatically.Peer ReviewedPostprint (author's final draft

    Transactional support for adaptive indexing

    Get PDF
    Adaptive indexing initializes and optimizes indexes incrementally, as a side effect of query processing. The goal is to achieve the benefits of indexes while hiding or minimizing the costs of index creation. However, index-optimizing side effects seem to turn read-only queries into update transactions that might, for example, create lock contention. This paper studies concurrency contr

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore