1,803 research outputs found

    A Quick Maximum Power Point Tracking Method Using an Embedded Learning Algorithm for Photovoltaics on Roads

    Get PDF
    This chapter presents a new approach to realize quick maximum power point tracking (MPPT) for photovoltaics (PVs) bedded on roads. The MPPT device for the road photovoltaics needs to support quick response to the shadow flickers caused by moving objects. Our proposed MPPT device is a microconverter connected to a short PV string. For real-world usage, several sets of PV string connected to the proposed microconverter will be connected in parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to learn the MPPs of a single PV string. Therefore, the MPPT device tracks MPP via the perturbation and observation method in normal circumstances and the learning machine learns the relationships between the acquired MPP and the temperature and magnitude of the Sun irradiation. Consequently, if the magnitude of the Sun beam incident on the PV panel changes quickly, the learning machine yields the predicted MPP to control a chopper circuit. The simulation results suggested that the proposed MPPT method can realize quick MPPT

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO

    Implementation of modular MPPT algorithm for energy harvesting embedded and IoT applications

    Get PDF
    The establishment of the latest IoT systems available today such as smart cities, smart buildings, and smart homes and wireless sensor networks (WSNs) are let the main design restriction on the inadequate supply of battery power. Hence proposing a solar-based photovoltaic (PV) system which is designed DC-DC buck-boost converter with an improved modular maximum power point tracking (MPPT) algorithm. The output voltage depends on the inductor, capacitor values, metal oxide semiconductor field effect transistor (MOSFET) switching frequency, and duty cycle. This paper focuses on the design and simulation of min ripple current/voltage and improved efficiency at PV array output, to store DC power. The stored DC power will be used for smart IoT systems. From the simulation results, the current ripples are observed to be minimized from 0.062 A to 0.02 A maintaining the duty cycle at 61.09 for switching frequencies ranges from 300 kHz to 10 MHz at the input voltage 48 V and the output voltage in buck mode 24 V, boost mode 100 V by maintaining constant 99.7 efficiencies. The improvised approach is compared to various existed techniques. It is noticed that the results are more useful for the self-powered Embedded & Internet of Things systems

    Design Control and Power Management of Small Satellite Microgrids

    Get PDF

    Microgrids:The Path to Sustainability

    Get PDF

    Microgrids

    Get PDF
    Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems

    IMPROVING THE ENDURANCE OF SMALL UNMANNED AERIAL VEHICLES UTILIZING FLEXIBLE SOLAR CELLS

    Get PDF
    Though studies and experimentation have been done regarding solar UAVs, it appears that these studies have been primarily focused on the development of futuristic prototypes or proof-of-concept vehicles used under very controlled conditions and without regard to extensive practical applications. On the other hand, in this research we seek to examine the flying endurance benefits that may be achieved by equipping the Nimbus Pro VTOL small unmanned aerial aircraft with commercially available thin film photovoltaic cells. Typical miniature and micro UAVs that run on battery power have an endurance of thirty minutes to two hours, after which time they need to be retrieved so that the batteries can be recharged, or so that another single-use battery can be installed. The retrieve-prepare-relaunch cycle can be greater than the on-station time for the UAV, and greatly reduces the utility of these systems to the intelligence gatherer or war fighter. The focus of this research is to determine the estimation of the power consumption of the Nimbus Pro VTOL and the power generated from an array of solar cells installed on the wing of the aircraft. With that information, we can approximate the additional flight time gained by the installation of the solar array.LTJG, Peruvian NavyApproved for public release. Distribution is unlimited
    • …
    corecore