1,274 research outputs found

    Incremental learning of skills in a task-parameterized Gaussian Mixture Model

    Get PDF
    The final publication is available at link.springer.comProgramming by demonstration techniques facilitate the programming of robots. Some of them allow the generalization of tasks through parameters, although they require new training when trajectories different from the ones used to estimate the model need to be added. One of the ways to re-train a robot is by incremental learning, which supplies additional information of the task and does not require teaching the whole task again. The present study proposes three techniques to add trajectories to a previously estimated task-parameterized Gaussian mixture model. The first technique estimates a new model by accumulating the new trajectory and the set of trajectories generated using the previous model. The second technique permits adding to the parameters of the existent model those obtained for the new trajectories. The third one updates the model parameters by running a modified version of the Expectation-Maximization algorithm, with the information of the new trajectories. The techniques were evaluated in a simulated task and a real one, and they showed better performance than that of the existent model.Peer ReviewedPostprint (author's final draft

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Improving Task-Parameterised Movement Learning Generalisation with Frame-Weighted Trajectory Generation

    Get PDF
    Learning from Demonstration depends on a robot learner generalising its learned model to unseen conditions, as it is not feasible for a person to provide a demonstration set that accounts for all possible variations in non-trivial tasks. While there are many learning methods that can handle interpolation of observed data effectively, extrapolation from observed data offers a much greater challenge. To address this problem of generalisation, this paper proposes a modified Task-Parameterised Gaussian Mixture Regression method that considers the relevance of task parameters during trajectory generation, as determined by variance in the data. The benefits of the proposed method are first explored using a simulated reaching task data set. Here it is shown that the proposed method offers far-reaching, low-error extrapolation abilities that are different in nature to existing learning methods. Data collected from novice users for a real-world manipulation task is then considered, where it is shown that the proposed method is able to effectively reduce grasping performance errors by 30%{\sim30\%} and extrapolate to unseen grasp targets under real-world conditions. These results indicate the proposed method serves to benefit novice users by placing less reliance on the user to provide high quality demonstration data sets.Comment: 8 pages, 6 figures, submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Active Incremental Learning of a Contextual Skill Model

    Get PDF
    Contextual skill models enable robot to generalize parameterized skills for a range of task parameters by using regression on several optimal policies. However, the task difficulty and task sequence of learning a contextual skill model is usually neglected. Thus, the learning process is usually time consuming since some tasks might be easier to learn or the knowledge of these tasks might be easier to share with other tasks. In this thesis, we introduce active incremental learning framework for actively learning a contextual skill model based on dynamical movement primitives which are widely used to learn parameterized policies on trajectory level as a dynamical system for robot. The proposed framework will first select a task which maximizes the expected improvement in skill performance over entire task parameters and then optimize the corresponding policy with a fixed number of iterations in policy search. We model the learning rate of policy search for predicting reward improvement over a single iteration. We evaluated the improvement of the skill performance in two tasks, ball-in-a-cup and basketball, with a simulated KUKA robot arm. In both, the results show that active task selection can improve the skill performance continuously over a baseline
    corecore