1,054 research outputs found

    On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets

    No full text
    We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge

    Generalized Rank Pooling for Activity Recognition

    Full text link
    Most popular deep models for action recognition split video sequences into short sub-sequences consisting of a few frames; frame-based features are then pooled for recognizing the activity. Usually, this pooling step discards the temporal order of the frames, which could otherwise be used for better recognition. Towards this end, we propose a novel pooling method, generalized rank pooling (GRP), that takes as input, features from the intermediate layers of a CNN that is trained on tiny sub-sequences, and produces as output the parameters of a subspace which (i) provides a low-rank approximation to the features and (ii) preserves their temporal order. We propose to use these parameters as a compact representation for the video sequence, which is then used in a classification setup. We formulate an objective for computing this subspace as a Riemannian optimization problem on the Grassmann manifold, and propose an efficient conjugate gradient scheme for solving it. Experiments on several activity recognition datasets show that our scheme leads to state-of-the-art performance.Comment: Accepted at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Learning over sets using boosted manifold principal angles (BoMPA)

    Full text link
    In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between corresponding vector subspaces. In particular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting can be used for application-optimal principal angle fusion. The strengths of the proposed method are empirically demonstrated on the task of automatic face recognition (AFR), in which it is shown to outperform state-of-the-art methods in the literature
    • …
    corecore