1,181 research outputs found

    Human motion database with a binary tree and node transition graphs

    Full text link
    Abstract — Database of human motion has been widely used for recognizing human motion and synthesizing humanoid motions. In this paper, we propose a data structure for storing and extracting human motion data and demonstrate that the database can be applied to the recognition and motion synthesis problems in robotics. We develop an efficient method for building a binary tree data structure from a set of continuous, multi-dimensional motion clips. Each node of the tree represents a statistical distribution of a set of human figure states extracted from the motion clips. We also identify the valid transitions among the nodes and construct node transition graphs. Similar states in different clips may be grouped into a single node, thereby allowing transitions between different behaviors. Using databases constructed from real human motion data, we demonstrate that the proposed data structure can be used for human motion recognition, state estimation and prediction, and robot motion planning. I

    Intelligent approaches in locomotion - a review

    Get PDF

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach
    • …
    corecore