14,062 research outputs found

    A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York

    Full text link
    BACKGROUND: Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. METHODS: For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM2.5) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM2.5 in a 10 km x 10 km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. RESULTS: In total, the incremental annualized cost of the lower-emitting pellet boiler was 190,000greater,drivenbyagreatercostofthepelletfuelandpollutioncontroltechnology,offsetinpartbyreducedfuelstoragecosts.PM2.5emissionswereafactorof23lowerwiththepelletboilerwithelectrostaticprecipitator,withcorrespondingdifferencesincontributionstoambientprimaryPM2.5concentrations.Themonetaryvalueofthepublichealthbenefitsofselectingthepellet−firedboilertechnologywithelectrostaticprecipitatorwas190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was 1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial patterns of health benefits given non-uniform age distributions and air pollution levels. CONCLUSIONS: The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations.This research was supported by the New York State Energy Research and Development Authority (NYSERDA), via an award to the Northeast States for Coordinated Air Use Management (Agreement #92229). The SCICHEM work of KMZ was supported by the Electric Power Research Institute (EPRI)

    Transport in polymer-gel composites: Theoretical methodology and response to an electric field

    Full text link
    A theoretical model of electromigrative, diffusive and convectivetransport polymer-gel composites is presented. Bulk properties are derived from the standard electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-saturated Brinkman medium. Because the microstructure can be carefully controlled, these materials are promising candidates for enhanced gel-electrophoresis, chemical sensing, drug delivery, and microfluidic pumping technologies. The methodology provides `exact' solutions for situations where perturbations from equilibrium are induced by gradients of electrostatic potential, concentration and pressure. While the volume fraction of the inclusions should be small, Maxwell's well-known theory of conduction suggests that the theory may also be accurate at moderate volume fractions. In this work, the model is used to compute ion fluxes, electrical current density, and convective flow induced by an applied electric field. The electric-field-induced (electro-osmotic) flow is a sensitive indicator of the inclusion zeta-potential and size, electrolyte concentration, and Darcy permeability of the gel, while the electrical conductivity increment is most often independent of the polymer gel, and is much less sensitive to particle and electrolyte characteristics

    The Rayleigh-Lamb wave propagation in dielectric elastomer layers subjected to large deformations

    Full text link
    The propagation of waves in soft dielectric elastomer layers is investigated. To this end incremental motions superimposed on homogeneous finite deformations induced by bias electric fields and pre-stretch are determined. First we examine the case of mechanically traction-free layer, which is an extension of the Rayleigh-Lamb problem in the purely elastic case. Two other loading configurations are accounted for too. Subsequently, numerical examples for the dispersion relations are evaluated for a dielectric solid governed by an augmented neo-Hookean strain energy. It is found that the the phase speeds and frequencies strongly depend on the electric excitation and pre-stretch. These findings lend themselves at the possibility of controlling the propagation velocity as well as filtering particular frequencies with suitable choices of the electric bias field

    An Extra Electrostatic Energy in Semiconductors and its Impact in Nanostructures

    Full text link
    This work revisits the classical concept of electric energy and suggests that the common definition is likely to generate large errors when dealing with nanostructures. For instance, deriving the electrostatic energy in semiconductors using the traditional formula fails at giving the correct electrostatic force between capacitor plates and reveals the existence of an extra contribution to the standard electrostatic energy. This additional energy is found to proceed from the generation of space charge regions which are predicted when combining electrostatics laws with semiconductor statistics, such as for accumulation and inversion layers. On the contrary, no such energy exists when relying on electrostatics only, as for instance when adopting the so-called full depletion approximation. The same holds for charged or neutral insulators that are still consistent with the customary definition, but which are in fact singular cases. In semiconductors, this additional free energy can largely exceed the energy gained by the dipoles, thus becoming the dominant term. Consequently, erroneous electrostatic forces in nanostructure systems such as for MEMS and NEMS as well as incorrect energy calculations are expected using the standard definition. This unexpected result clearly asks for a generalization of electrostatic energy in matter in order to reconcile basic concepts and to prevent flawed force evaluation in nanostructures with electrical charges.Comment: 24 pages 8 figure

    Prospects for Interstellar Propulsion

    Get PDF
    In recognition of the increasing prospects for Earth-like exoplanet discoveries and its significance for spurring future interstellar voyages of discovery, the United States Congress recently directed NASA to undertake an interstellar mission technology assessment report. In response to this legislative charge to action, NASA has undertaken a series of extramural interstellar workshops aimed at identifying and evaluating technology concepts for enabling an interstellar scientific probe mission, associated technical challenges, technology readiness level assessments, risks, potential near-term milestones, and funding requirements. This paper summarizes these activities and discusses the scientific and technical rationale for a long-term program consisting of incremental, staged technical developments that are extensible for interstellar travel to a nearby star system over many decades

    Charged inclusion in nematic liquid crystals

    Get PDF
    We present a general theory of liquid crystals under inhomogeneous electric field in a Ginzburg-Landau scheme. The molecular orientation can be deformed by electric field when the dielectric tensor is orientation-dependent. We then investigate the influence of a charged particle on the orientation order in a nematic state. The director is aligned either along or perpendicular to the local electric field around the charge, depending on the sign of the dielectric anisotropy. The deformation becomes stronger with increasing the ratio Ze/RZe/R, where ZeZe is the charge and RR is the radius of the particle. Numerical analysis shows the presence of defects around the particle for large Ze/RZe/R. They are nanometer-scale defects for microscopic ions. If the dielectric anisotropy is positive, a Saturn ring defect appears. If it is negative, a pair of point defects appear apart from the particle surface, each being connected to the surface by a disclination line segment.Comment: 12 figure
    • …
    corecore