1,736 research outputs found

    Contributions to the Construction of Extensible Semantic Editors

    Get PDF
    This dissertation addresses the need for easier construction and extension of language tools. Specifically, the construction and extension of so-called semantic editors is considered, that is, editors providing semantic services for code comprehension and manipulation. Editors like these are typically found in state-of-the-art development environments, where they have been developed by hand. The list of programming languages available today is extensive and, with the lively creation of new programming languages and the evolution of old languages, it keeps growing. Many of these languages would benefit from proper tool support. Unfortunately, the development of a semantic editor can be a time-consuming and error-prone endeavor, and too large an effort for most language communities. Given the complex nature of programming, and the huge benefits of good tool support, this lack of tools is problematic. In this dissertation, an attempt is made at narrowing the gap between generative solutions and how state-of-the-art editors are constructed today. A generative alternative for construction of textual semantic editors is explored with focus on how to specify extensible semantic editor services. Specifically, this dissertation shows how semantic services can be specified using a semantic formalism called refer- ence attribute grammars (RAGs), and how these services can be made responsive enough for editing, and be provided also when the text in an editor is erroneous. Results presented in this dissertation have been found useful, both in industry and in academia, suggesting that the explored approach may help to reduce the effort of editor construction

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    SAGA: A project to automate the management of software production systems

    Get PDF
    The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented

    Incremental parsing algorithms for speech-editing mathematics and computer code

    Get PDF
    The provision of speech control for editing plain language text has existed for a long time, but does not extend to structured content such as mathematics. The requirements of a user interface for a spoken mathematics editor are explored through the lens of an intuitive natural user interface (NUI) for speech control, the desired properties of which are based on a combination of existing literature on NUIs and intuitive user interfaces. An important aspect of an intuitive NUI is timely update of display of the content in response to editing actions. This is not feasible using batch parsing alone, and this issue will be more serious for larger documents such as computer program code. The solution is an incremental parser designed to work with operator precedence (OP) grammars. The contribution to knowledge provided by this thesis is to improve the efficiency in terms of processing time, of the OP incremental parsing algorithm developed by Heeman, and extend it to handle the distfix (mixfix) operators described by Attanayake to model brackets and mathematical functions. This is implemented successfully for the TalkMaths system and shows a greatly reduced response time compared with using batch scanning and parsing alone. The author is not aware of any other incremental OP parser that handles such operators. Furthermore, a proposal is made for modifications to the data structures produced by Attanayake's parser, along with appropriate adjustments to the incremental parser, that will in the future, facilitate application of OP grammar to program code or other structured content by changing the definition of its content language

    A Transition-Based Directed Acyclic Graph Parser for UCCA

    Full text link
    We present the first parser for UCCA, a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. To our knowledge, the conjunction of these formal properties is not supported by any existing parser. Our transition-based parser, which uses a novel transition set and features based on bidirectional LSTMs, has value not just for UCCA parsing: its ability to handle more general graph structures can inform the development of parsers for other semantic DAG structures, and in languages that frequently use discontinuous structures.Comment: 16 pages; Accepted as long paper at ACL201

    Run-Time Verification of Black-Box Components Using Behavioral Specifications: An Experience Report on Tool Development

    Get PDF
    We introduce a generic component-based design of a run-time checker, identify its components and their requirements, and evaluate existing state of the art tools instantiating each component
    • …
    corecore