874 research outputs found

    Incremental Maintenance of Maximal Cliques in a Dynamic Graph

    Full text link
    We consider the maintenance of the set of all maximal cliques in a dynamic graph that is changing through the addition or deletion of edges. We present nearly tight bounds on the magnitude of change in the set of maximal cliques, as well as the first change-sensitive algorithms for clique maintenance, whose runtime is proportional to the magnitude of the change in the set of maximal cliques. We present experimental results showing these algorithms are efficient in practice and are faster than prior work by two to three orders of magnitude.Comment: 18 pages, 8 figure

    On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs

    Full text link
    Modern networks are of huge sizes as well as high dynamics, which challenges the efficiency of community detection algorithms. In this paper, we study the problem of overlapping community detection on distributed and dynamic graphs. Given a distributed, undirected and unweighted graph, the goal is to detect overlapping communities incrementally as the graph is dynamically changing. We propose an efficient algorithm, called \textit{randomized Speaker-Listener Label Propagation Algorithm} (rSLPA), based on the \textit{Speaker-Listener Label Propagation Algorithm} (SLPA) by relaxing the probability distribution of label propagation. Besides detecting high-quality communities, rSLPA can incrementally update the detected communities after a batch of edge insertion and deletion operations. To the best of our knowledge, rSLPA is the first algorithm that can incrementally capture the same communities as those obtained by applying the detection algorithm from the scratch on the updated graph. Extensive experiments are conducted on both synthetic and real-world datasets, and the results show that our algorithm can achieve high accuracy and efficiency at the same time.Comment: A short version of this paper will be published as ICDE'2018 poste

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    Graph-RAT: Combining data sources in music recommendation systems

    Get PDF
    The complexity of music recommendation systems has increased rapidly in recent years, drawing upon different sources of information: content analysis, web-mining, social tagging, etc. Unfortunately, the tools to scientifically evaluate such integrated systems are not readily available; nor are the base algorithms available. This article describes Graph-RAT (Graph-based Relational Analysis Toolkit), an open source toolkit that provides a framework for developing and evaluating novel hybrid systems. While this toolkit is designed for music recommendation, it has applications outside its discipline as well. An experiment—indicative of the sort of procedure that can be configured using the toolkit—is provided to illustrate its usefulness
    corecore