1,017 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Hellinger Distance Trees for Imbalanced Streams

    Get PDF
    Classifiers trained on data sets possessing an imbalanced class distribution are known to exhibit poor generalisation performance. This is known as the imbalanced learning problem. The problem becomes particularly acute when we consider incremental classifiers operating on imbalanced data streams, especially when the learning objective is rare class identification. As accuracy may provide a misleading impression of performance on imbalanced data, existing stream classifiers based on accuracy can suffer poor minority class performance on imbalanced streams, with the result being low minority class recall rates. In this paper we address this deficiency by proposing the use of the Hellinger distance measure, as a very fast decision tree split criterion. We demonstrate that by using Hellinger a statistically significant improvement in recall rates on imbalanced data streams can be achieved, with an acceptable increase in the false positive rate.Comment: 6 Pages, 2 figures, to be published in Proceedings 22nd International Conference on Pattern Recognition (ICPR) 201

    Continual learning from stationary and non-stationary data

    Get PDF
    Continual learning aims at developing models that are capable of working on constantly evolving problems over a long-time horizon. In such environments, we can distinguish three essential aspects of training and maintaining machine learning models - incorporating new knowledge, retaining it and reacting to changes. Each of them poses its own challenges, constituting a compound problem with multiple goals. Remembering previously incorporated concepts is the main property of a model that is required when dealing with stationary distributions. In non-stationary environments, models should be capable of selectively forgetting outdated decision boundaries and adapting to new concepts. Finally, a significant difficulty can be found in combining these two abilities within a single learning algorithm, since, in such scenarios, we have to balance remembering and forgetting instead of focusing only on one aspect. The presented dissertation addressed these problems in an exploratory way. Its main goal was to grasp the continual learning paradigm as a whole, analyze its different branches and tackle identified issues covering various aspects of learning from sequentially incoming data. By doing so, this work not only filled several gaps in the current continual learning research but also emphasized the complexity and diversity of challenges existing in this domain. Comprehensive experiments conducted for all of the presented contributions have demonstrated their effectiveness and substantiated the validity of the stated claims

    On utilizing weak estimators to achieve the online classification of data streams

    Get PDF
    Author's accepted version (post-print).Available from 03/09/2021.acceptedVersio

    Concept Drift Adaptation with Incremental–Decremental SVM

    Get PDF
    Data classification in streams where the underlying distribution changes over time is known to be difficult. This problem—known as concept drift detection—involves two aspects: (i) detecting the concept drift and (ii) adapting the classifier. Online training only considers the most recent samples; they form the so-called shifting window. Dynamic adaptation to concept drift is performed by varying the width of the window. Defining an online Support Vector Machine (SVM) classifier able to cope with concept drift by dynamically changing the window size and avoiding retraining from scratch is currently an open problem. We introduce the Adaptive Incremental–Decremental SVM (AIDSVM), a model that adjusts the shifting window width using the Hoeffding statistical test. We evaluate AIDSVM performance on both synthetic and real-world drift datasets. Experiments show a significant accuracy improvement when encountering concept drift, compared with similar drift detection models defined in the literature. The AIDSVM is efficient, since it is not retrained from scratch after the shifting window slides

    Data stream mining techniques: a review

    Get PDF
    A plethora of infinite data is generated from the Internet and other information sources. Analyzing this massive data in real-time and extracting valuable knowledge using different mining applications platforms have been an area for research and industry as well. However, data stream mining has different challenges making it different from traditional data mining. Recently, many studies have addressed the concerns on massive data mining problems and proposed several techniques that produce impressive results. In this paper, we review real time clustering and classification mining techniques for data stream. We analyze the characteristics of data stream mining and discuss the challenges and research issues of data steam mining. Finally, we present some of the platforms for data stream mining
    • …
    corecore