79 research outputs found

    Online determinization of large mutating automata

    Get PDF
    A mutating finite automaton (MFA) is a nondeterministic finite automaton (NFA) which changes its morphology over discrete time by a sequence of mutations, one mutation at each time instant. A mutation involves the insertion and/or removal of a set of states and/or transitions. This results in a sequence of NFAs, one mutated NFA for each mutation. Some application domains, including model-based diagnosis and monitoring of active systems in artificial intelligence and model-based testing in software engineering, require online determinization of MFAs. Determinizing an MFA online means generating a deterministic finite automaton (DFA) as soon as a mutation occurs, which is equivalent to the mutated NFA. Since the classical Subset Construction determinization algorithm may be inadequate for MFAs, a conservative algorithm is proposed, called Subset Restructuring, that generates the new DFA by restructuring the previous DFA based on the mutation occurred, instead of building it from scratch. Experimental results indicate the effectiveness of the approach, especially so when large MFAs change in time by small mutations

    Quick Subset Construction

    Get PDF
    A finite automaton can be either deterministic (DFA) or nondeterministic (NFA). An automaton-based task is in general more efficient when performed with a DFA rather than an NFA. For any NFA there is an equivalent DFA that can be generated by the classical Subset Construction algorithm. When, however, a large NFA may be transformed into an equivalent DFA by a series of actions operating directly on the NFA, Subset Construction may be unnecessarily expensive in computation, as a (possibly large) deterministic portion of the NFA is regenerated as is, a waste of processing. This is why a conservative algorithm for NFA determinization is proposed, called Quick Subset Construction, which progressively transforms an NFA into an equivalent DFA instead of generating the DFA from scratch, thereby avoiding unnecessary processing. Quick Subset Construction is proven, both formally and empirically, to be equivalent to Subset Construction, inasmuch it generates exactly the same DFA. Experimental results indicate that, the smaller the number of repair actions performed on the NFA, as compared to the size of the equivalent DFA, the faster Quick Subset Construction over Subset Construction

    Twin‐engined diagnosis of discrete‐event systems

    Get PDF
    Diagnosis of discrete-event systems (DESs) is computationally complex. This is why a variety of knowledge compilation techniques have been proposed, the most notable of them rely on a diagnoser. However, the construction of a diagnoser requires the generation of the whole system space, thereby making the approach impractical even for DESs of moderate size. To avoid total knowledge compilation while preserving efficiency, a twin-engined diagnosis technique is proposed in this paper, which is inspired by the two operational modes of the human mind. If the symptom of the DES is part of the knowledge or experience of the diagnosis engine, then Engine 1 allows for efficient diagnosis. If, instead, the symptom is unknown, then Engine 2 comes into play, which is far less efficient than Engine 1. Still, the experience acquired by Engine 2 is then integrated into the symptom dictionary of the DES. This way, if the same diagnosis problem arises anew, then it will be solved by Engine 1 in linear time. The symptom dic- tionary can also be extended by specialized knowledge coming from scenarios, which are the most critical/probable behavioral patterns of the DES, which need to be diagnosed quickly

    Pushdown automata in statistical machine translation

    Get PDF
    This article describes the use of pushdown automata (PDA) in the context of statistical machine translation and alignment under a synchronous context-free grammar. We use PDAs to compactly represent the space of candidate translations generated by the grammar when applied to an input sentence. General-purpose PDA algorithms for replacement, composition, shortest path, and expansion are presented. We describe HiPDT, a hierarchical phrase-based decoder using the PDA representation and these algorithms. We contrast the complexity of this decoder with a decoder based on a finite state automata representation, showing that PDAs provide a more suitable framework to achieve exact decoding for larger synchronous context-free grammars and smaller language models. We assess this experimentally on a large-scale Chinese-to-English alignment and translation task. In translation, we propose a two-pass decoding strategy involving a weaker language model in the first-pass to address the results of PDA complexity analysis. We study in depth the experimental conditions and tradeoffs in which HiPDT can achieve state-of-the-art performance for large-scale SMT. </jats:p

    Constructing minimal acyclic deterministic finite automata

    Get PDF
    This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D) in the FASTAR group of the Department of Computer Science, University of Pretoria, South Africa. I present a number of algorithms for constructing minimal acyclic deterministic finite automata (MADFAs), most of which I originally derived/designed or co-discovered. Being acyclic, such automata represent finite languages and have proven useful in applications such as spellchecking, virus-searching and text indexing. In many of those applications, the automata grow to billions of states, making them difficult to store without using various compression techniques — the most important of which is minimization. Results from the late 1950’s show that minimization yields a unique automaton (for a given language), and later results show that minimization of acyclic automata is possible in time linear in the number of states. These two results make for a rich area of algorithmics research; automata and algorithmics research are relatively old fields of computing science and the discovery/invention of new algorithms in the field is an exciting result. I present both incremental and nonincremental algorithms. With nonincremental techniques, the unminimized acyclic deterministic finite automaton (ADFA) is first constructed and then minimized. As mentioned above, the unminimized ADFA can be very large indeed — often even too large to fit within the virtual memory space of the computer. As a result, incremental techniques for minimization (i.e. the ADFA is minimized during its construction) become interesting. Incremental algorithms frequently have some overhead: if the unminimized ADFA fits easily within physical memory, it may still be faster to use nonincremental techniques. The presentation used in this thesis has a few unusual characteristics: Few other presentations follow a correctness-by-construction style for presenting and deriving algorithms. The presentations given here include correctness arguments or sketches thereof. The presentation is taxonomic — emphasizing the similarities and differences between the algorithms at a fundamental level. While it is possible to present these algorithms in a formal-language-theoretic setting, this thesis remains somewhat closer to the actual implementation issues. In several chapters, new algorithms and interesting new variants of existing algorithms are presented. It gives new presentations of many existing algorithms — all in a common format with common examples. There are extensive links to the existing literature. Thesis (PhD)--University of Pretoria, 2010.Computer Scienceunrestricte

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families
    corecore