6,259 research outputs found

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    Get PDF
    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated

    A Goal-Oriented Autonomous Controller for Space Exploration

    Get PDF
    The Goal-Oriented Autonomous Controller (GOAC) is the envisaged result of a multi-institutional effort within the on-going Autonomous Controller R&D activity funded by ESA ESTEC. The objective of this effort is to design, build and test a viable on-board controller to demonstrate key concepts in fully autonomous operations for ESA missions. This three-layer architecture is an integrative effort to bring together four mature technologies; for a functional layer, a verification and validation system, a planning engine and a controller framework for planning and execution which uses the sense-plan-act paradigm for goal oriented autonomy. GOAC as a result will generate plans in situ, deterministically dispatch activities for execution, and recover from off-nominal conditions

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Experiences with the JPL telerobot testbed: Issues and insights

    Get PDF
    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom
    • …
    corecore