38 research outputs found

    Incremental Color Quantization for Color-Vision-Deficient Observers Using Mobile Gaming Data

    No full text
    The sizes of compressed images depend on their spatial resolution (number of pixels) and on their color resolution (number of color quantization levels). We introduce DaltonQuant, a new color quantization technique for image compression that cloud services can apply to images destined for a specific user with known color vision deficiencies. DaltonQuant improves compression in a user-specific but reversible manner thereby improving a user's network bandwidth and data storage efficiency. DaltonQuant quantizes image data to account for user-specific color perception anomalies, using a new method for incremental color quantization based on a large corpus of color vision acuity data obtained from a popular mobile game. Servers that host images can revert DaltonQuant's image requantization and compression when those images must be transmitted to a different user, making the technique practical to deploy on a large scale. We evaluate DaltonQuant's compression performance on the Kodak PC reference image set and show that it improves compression by an additional 22%-29% over the state-of-the-art compressors TinyPNG and pngquant

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore