43,682 research outputs found

    Distributed Holistic Clustering on Linked Data

    Full text link
    Link discovery is an active field of research to support data integration in the Web of Data. Due to the huge size and number of available data sources, efficient and effective link discovery is a very challenging task. Common pairwise link discovery approaches do not scale to many sources with very large entity sets. We here propose a distributed holistic approach to link many data sources based on a clustering of entities that represent the same real-world object. Our clustering approach provides a compact and fused representation of entities, and can identify errors in existing links as well as many new links. We support a distributed execution of the clustering approach to achieve faster execution times and scalability for large real-world data sets. We provide a novel gold standard for multi-source clustering, and evaluate our methods with respect to effectiveness and efficiency for large data sets from the geographic and music domains

    Unsupervised extraction of recurring words from infant-directed speech

    Get PDF
    To date, most computational models of infant word segmentation have worked from phonemic or phonetic input, or have used toy datasets. In this paper, we present an algorithm for word extraction that works directly from naturalistic acoustic input: infant-directed speech from the CHILDES corpus. The algorithm identifies recurring acoustic patterns that are candidates for identification as words or phrases, and then clusters together the most similar patterns. The recurring patterns are found in a single pass through the corpus using an incremental method, where only a small number of utterances are considered at once. Despite this limitation, we show that the algorithm is able to extract a number of recurring words, including some that infants learn earliest, such as Mommy and the child’s name. We also introduce a novel information-theoretic evaluation measure

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Memory Based Online Learning of Deep Representations from Video Streams

    Full text link
    We present a novel online unsupervised method for face identity learning from video streams. The method exploits deep face descriptors together with a memory based learning mechanism that takes advantage of the temporal coherence of visual data. Specifically, we introduce a discriminative feature matching solution based on Reverse Nearest Neighbour and a feature forgetting strategy that detect redundant features and discard them appropriately while time progresses. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used in relevant applications like multiple face identification and tracking from unconstrained video streams. Experimental results show that the proposed method achieves comparable results in the task of multiple face tracking and better performance in face identification with offline approaches exploiting future information. Code will be publicly available.Comment: arXiv admin note: text overlap with arXiv:1708.0361

    Incremental Entity Resolution from Linked Documents

    Full text link
    In many government applications we often find that information about entities, such as persons, are available in disparate data sources such as passports, driving licences, bank accounts, and income tax records. Similar scenarios are commonplace in large enterprises having multiple customer, supplier, or partner databases. Each data source maintains different aspects of an entity, and resolving entities based on these attributes is a well-studied problem. However, in many cases documents in one source reference those in others; e.g., a person may provide his driving-licence number while applying for a passport, or vice-versa. These links define relationships between documents of the same entity (as opposed to inter-entity relationships, which are also often used for resolution). In this paper we describe an algorithm to cluster documents that are highly likely to belong to the same entity by exploiting inter-document references in addition to attribute similarity. Our technique uses a combination of iterative graph-traversal, locality-sensitive hashing, iterative match-merge, and graph-clustering to discover unique entities based on a document corpus. A unique feature of our technique is that new sets of documents can be added incrementally while having to re-resolve only a small subset of a previously resolved entity-document collection. We present performance and quality results on two data-sets: a real-world database of companies and a large synthetically generated `population' database. We also demonstrate benefit of using inter-document references for clustering in the form of enhanced recall of documents for resolution.Comment: 15 pages, 8 figures, patented wor
    • 

    corecore