19,045 research outputs found

    Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

    Get PDF
    We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC\u2702, Bernstein STOC\u2713] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions

    A Zero-Space algorithm for Negative Cost Cycle Detection in networks

    Get PDF
    AbstractThis paper is concerned with the problem of checking whether a network with positive and negative costs on its arcs contains a negative cost cycle. The Negative Cost Cycle Detection (NCCD) problem is one of the more fundamental problems in network design and finds applications in a number of domains ranging from Network Optimization and Operations Research to Constraint Programming and System Verification. As per the literature, approaches to this problem have been either Relaxation-based or Contraction-based. We introduce a fundamentally new approach for negative cost cycle detection; our approach, which we term as the Stressing Algorithm, is based on exploiting the connections between the NCCD problem and the problem of checking whether a system of difference constraints is feasible. The Stressing Algorithm is an incremental, comparison-based procedure which is as efficient as the fastest known comparison-based algorithm for this problem. In particular, on a network with n vertices and m edges, the Stressing Algorithm takes O(m⋅n) time to detect the presence of a negative cost cycle or to report that none exists. A very important feature of the Stressing Algorithm is that it uses zero extra space; this is in marked contrast to all known algorithms that require Ω(n) extra space. It is well known that the NCCD problem is closely related to the Single Source Shortest Paths (SSSP) problem, i.e., the problem of determining the shortest path distances of all the vertices in a network, from a specified source; indeed most algorithms in the literature for the NCCD problem are modifications of approaches to the SSSP problem. At this juncture, it is not clear whether the Stressing Algorithm could be extended to solve the SSSP problem, even if O(n) extra space is available

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude
    • …
    corecore