13,353 research outputs found

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing

    Reclaiming the energy of a schedule: models and algorithms

    Get PDF
    We consider a task graph to be executed on a set of processors. We assume that the mapping is given, say by an ordered list of tasks to execute on each processor, and we aim at optimizing the energy consumption while enforcing a prescribed bound on the execution time. While it is not possible to change the allocation of a task, it is possible to change its speed. Rather than using a local approach such as backfilling, we consider the problem as a whole and study the impact of several speed variation models on its complexity. For continuous speeds, we give a closed-form formula for trees and series-parallel graphs, and we cast the problem into a geometric programming problem for general directed acyclic graphs. We show that the classical dynamic voltage and frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem, even if the modes are regularly distributed (an important particular case in practice, which we analyze as the incremental model). On the contrary, the VDD-hopping model leads to a polynomial solution. Finally, we provide an approximation algorithm for the incremental model, which we extend for the general DVFS model.Comment: A two-page extended abstract of this work appeared as a short presentation in SPAA'2011, while the long version has been accepted for publication in "Concurrency and Computation: Practice and Experience

    Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners

    Get PDF
    In real-world applications of education, an effective teacher adaptively chooses the next example to teach based on the learner's current state. However, most existing work in algorithmic machine teaching focuses on the batch setting, where adaptivity plays no role. In this paper, we study the case of teaching consistent, version space learners in an interactive setting. At any time step, the teacher provides an example, the learner performs an update, and the teacher observes the learner's new state. We highlight that adaptivity does not speed up the teaching process when considering existing models of version space learners, such as "worst-case" (the learner picks the next hypothesis randomly from the version space) and "preference-based" (the learner picks hypothesis according to some global preference). Inspired by human teaching, we propose a new model where the learner picks hypotheses according to some local preference defined by the current hypothesis. We show that our model exhibits several desirable properties, e.g., adaptivity plays a key role, and the learner's transitions over hypotheses are smooth/interpretable. We develop efficient teaching algorithms and demonstrate our results via simulation and user studies.Comment: NeurIPS 2018 (extended version

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

    Get PDF
    Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E)G=(V,E) with nn vertices and mm edges, the textbook algorithm takes O(n+m)O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n)O(n) worst case time per operation, and requires O(min⁥{mlog⁥n,n2})O\left(\min\{m \log n, n^2\}\right) preprocessing time. Our result improves the previous O(nlog⁥3n)O(n \log^3 n) worst case update time algorithm by Baswana et al. and the O(nlog⁥n)O(n \log n) time by Nakamura and Sadakane, and matches the trivial Ω(n)\Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas

    The Critical Radius in Sampling-based Motion Planning

    Full text link
    We develop a new analysis of sampling-based motion planning in Euclidean space with uniform random sampling, which significantly improves upon the celebrated result of Karaman and Frazzoli (2011) and subsequent work. Particularly, we prove the existence of a critical connection radius proportional to Θ(n−1/d){\Theta(n^{-1/d})} for nn samples and d{d} dimensions: Below this value the planner is guaranteed to fail (similarly shown by the aforementioned work, ibid.). More importantly, for larger radius values the planner is asymptotically (near-)optimal. Furthermore, our analysis yields an explicit lower bound of 1−O(n−1){1-O( n^{-1})} on the probability of success. A practical implication of our work is that asymptotic (near-)optimality is achieved when each sample is connected to only Θ(1){\Theta(1)} neighbors. This is in stark contrast to previous work which requires Θ(log⁡n){\Theta(\log n)} connections, that are induced by a radius of order (log⁡nn)1/d{\left(\frac{\log n}{n}\right)^{1/d}}. Our analysis is not restricted to PRM and applies to a variety of PRM-based planners, including RRG, FMT* and BTT. Continuum percolation plays an important role in our proofs. Lastly, we develop similar theory for all the aforementioned planners when constructed with deterministic samples, which are then sparsified in a randomized fashion. We believe that this new model, and its analysis, is interesting in its own right

    PDDLStream: Integrating Symbolic Planners and Blackbox Samplers via Optimistic Adaptive Planning

    Full text link
    Many planning applications involve complex relationships defined on high-dimensional, continuous variables. For example, robotic manipulation requires planning with kinematic, collision, visibility, and motion constraints involving robot configurations, object poses, and robot trajectories. These constraints typically require specialized procedures to sample satisfying values. We extend PDDL to support a generic, declarative specification for these procedures that treats their implementation as black boxes. We provide domain-independent algorithms that reduce PDDLStream problems to a sequence of finite PDDL problems. We also introduce an algorithm that dynamically balances exploring new candidate plans and exploiting existing ones. This enables the algorithm to greedily search the space of parameter bindings to more quickly solve tightly-constrained problems as well as locally optimize to produce low-cost solutions. We evaluate our algorithms on three simulated robotic planning domains as well as several real-world robotic tasks.Comment: International Conference on Automated Planning and Scheduling (ICAPS) 202
    • 

    corecore